Abstract:
A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
Abstract:
A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
Abstract:
An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
Abstract:
A power holdup circuit including a monitoring circuit and a power holdup circuit. The monitoring circuit includes an average voltage comparator and an absolute voltage comparator which cooperate to detect a voltage drop in the voltage supplied by the power supply. The monitoring circuit also includes a timer to determine the time period of the voltage dropout. If a predetermined voltage dropout event occurs, the monitoring circuit generates a control signal to a switching component which activates a holdup power source. The holdup power source includes an energy storage device that stores energy to maintain the supply voltage during dropout periods.
Abstract:
A method for controlling pulsed power that includes measuring a first pulse of power from a power amplifier to obtain data. The method also includes generating a first signal to adjust a second pulse of delivered power, the first signal correlated to the data to minimize a power difference between a power set point and a substantially stable portion of the second pulse. The method also includes generating a second signal to adjust the second pulse of delivered power, the second signal correlated to the data to minimize an amplitude difference between a peak of the second pulse and the substantially stable portion of the second pulse.
Abstract:
An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
Abstract:
An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
Abstract:
An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
Abstract:
A method for controlling pulsed power that includes measuring a first pulse of power from a power amplifier to obtain data. The method also includes generating a first signal to adjust a second pulse of delivered power, the first signal correlated to the data to minimize a power difference between a power set point and a substantially stable portion of the second pulse. The method also includes generating a second signal to adjust the second pulse of delivered power, the second signal correlated to the data to minimize an amplitude difference between a peak of the second pulse and the substantially stable portion of the second pulse.
Abstract:
A control circuit for a switching power supply reacts to an over current condition in the switching power supply to bring its operating point to a safe condition. The control circuit senses both the direction and the magnitude of the load current in the switching power supply, and then uses this sensed information to control the active power switches in the switching power supply. In an over current condition, the switches are controlled to actively drive the load current toward zero, even if the sensed information is delayed or heavily filtered, or the switch signals from the control circuit are delayed in reaching the switches. The resulting operation of the switching power supply is more resistant to abnormal load conditions and is maintained in the presence of transient short circuits or arcs. The switching power supply hardware is also better protected.