Abstract:
An electrical damping system provides damping over a wide range of frequencies including high frequencies. The system includes a resistance in parallel with an electric motor or series connected resistance and capacitance in parallel with the electric motor. In another embodiment, an electrical damping system is provided for a motor having a delta or wye motor winding configuration.
Abstract:
A configuration system for an intelligent assist system is provided. The intelligent assist system includes a module, and a computational node on the module. The configuration system includes a host computer system capable of executing a stored program. The host computer system is in communication with the computational node via a communication link. The system also includes a graphical user interface enabling a user to manipulate objects related to the module or the computational node, and a plurality of visual indicators corresponding to a status of the module, the computational node, or the communication link.
Abstract:
A transmission or actuator offering multiple rotational outputs proportionate in speed to that of a common rotational input, each output according to its own ratio. The ratios are continuously variable between positive and negative values, including zero, and may be varied by electromechanical actuators under computer control. The transmission relates the output speeds one to another under computer control, and thus makes possible the establishment of virtual surfaces and other haptic effects in a multidimensional workspace to which the transmission outputs are kinematically linked. An example of such a workspace is that of a robotic or prosthetic hand.
Abstract:
An electrical damping system provides damping over a wide range of frequencies including high frequencies. The system includes a resistance in parallel with an electric motor or series connected resistance and capacitance in parallel with the electric motor. In another embodiment, an electrical damping system is provided for a motor having a delta or wye motor winding configuration.
Abstract:
A pelvic support unit is coupled to a base by a powered vertical force actuator mechanism. A torso support unit, which is affixed to the patient independently of the pelvic support unit, is connected to the base by one or more powered articulations which are actuable around respective axes of motion. Sensors sense the linear and angular displacement of the pelvic support unit and the torso support unit. A control unit is coupled to these sensors and, responsive to signals from them, selectively control the displacement actuator and articulation(s). Wheel modules are independently powered to both rotate and steer, and, responsive to the control unit, are capable of rolling the exercise device in a direction of travel intended by the patient.