Abstract:
An ultra-high voltage device has a high voltage path established from a high voltage N-well through a first metal layer to a second metal layer, and a contact plug electrically connected between the high voltage N-well and the first metal layer. The contact plug has a distributed structure on a horizontal layout to improve the uniformity of the ultra-high voltage device such that the current in the high voltage path will be more uniform distributed so as to avoid the localized heat concentration caused by non-uniform current distribution that would damage the ultra-high voltage device. Multiple fuse apparatus are preferably connected to the first metal layer individually. Each the fuse apparatus includes a poly fuse to be burnt down when an over-load current flows therethrough.
Abstract:
An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
Abstract:
The invention describes a structure and a process for providing ESD semiconductor protection with reduced input capacitance. The structure consists of heavily doped P+ guard rings surrounding the I/O ESD protection device and the Vcc to Bss protection device. In addition, there is a heavily doped N+ guard ring surrounding the I/O protection device its P+ guard ring. The guard rings enhance structure diode elements providing enhanced ESD energy discharge path capability enabling the elimination of a specific conventional Vss to I/O pad ESD protection device. This reduces the capacitance seen by the I/O circuit while still providing adequate ESD protection for the active circuit devices.
Abstract:
The present invention relates to an electrostatic discharge (ESD) protection scheme and particularly to a string contact structure for an improved ESD performance. In an embodiment, the invention provides a method for forming an ESD protection circuit for protecting an internal circuit from damage due to an ESD voltage appearing on a pad coupled to a clamp device including a first terminal and a second terminal. The method includes forming a string contact along the first terminal and the second terminal of the clamp device. The method further includes forming one or more conductive layers on the string contact to couple the first terminal and the second terminal of the clamp device to the pad and a ground pad.
Abstract:
Embodiments of the invention relate to an electrostatic discharge (ESD) device and method for forming an ESD device. An embodiment is an ESD protection device comprising a p well disposed in a substrate, an n well disposed in the substrate, a high voltage n well (HVNW) disposed between the p well and the n well in the substrate, a source n+ region disposed in the p well, and a plurality of drain n+ regions disposed in the n well.
Abstract:
An electrostatic discharge (ESD) structure connected to a bonding pad in an integrated circuit comprising: a P-type substrate with one or more first P+ regions connected to a low voltage supply (GND), a first Nwell formed in the P-type substrate, one or more second P+ regions disposed inside the first Nwell and connected to the bonding pad, at least one first N+ region disposed outside the first Nwell but in the P-type substrate and connected to the GND, at least one second N+ region disposed outside the first Nwell but in the P-type substrate and connected to the bonding pad, wherein the second N+ region is farther away from the first Nwell than the first N+ region, and at least one conductive material disposed above the P-type substrate between the first and second N+ regions and coupled to the GND, wherein the first N+ region, the second N+ region and the conductive material form the source, drain and gate of an NMOS transistor, respectively, and the first P+ region is farther away from the first Nwell than the NMOS transistor.
Abstract:
A circuit system is disclosed for protecting a capacitor coupled between a voltage supply node and a complementary voltage supply node from an ESD. The circuit system includes at least one NMOS transistor having a drain coupled to the voltage supply node, a source and a gate together coupled to the complementary voltage supply node, and at least one diode chain having one or more diodes serially coupled between the voltage supply node and the complementary voltage supply node. During an ESD event, the diode chain and the NMOS transistor dissipate an ESD current from the voltage supply node to the complementary voltage supply node, thereby protecting the capacitor from ESD induced damages.
Abstract:
An electrostatic discharge (ESD) protection device includes a diode located in a substrate and an N-type metal oxide semiconductor (NMOS) device located in the substrate adjacent the diode, wherein both the diode and the NMOS are coupled to an input device, and at least a portion of the diode and at least a portion of the NMOS device collectively form an ESD protection device.
Abstract:
The present invention relates to an electrostatic discharge (ESD) protection scheme and particularly to a string contact structure for an improved ESD performance. In an embodiment, the invention provides a method for forming an ESD protection circuit for protecting an internal circuit from damage due to an ESD voltage appearing on a pad coupled to a clamp device including a first terminal and a second terminal. The method includes forming a string contact along the first terminal and the second terminal of the clamp device. The method further includes forming one or more conductive layers on the string contact to couple the first terminal and the second terminal of the clamp device to the pad and a ground pad.
Abstract:
A decoupling capacitor with increased resistance to electrostatic discharge (ESD) is provided on an integrated circuit (IC). The capacitor may be single or multi-fingered. In one example, the capacitor includes first and second electrodes separated by a dielectric material, a source positioned proximate to the first electrode, and a floating drain positioned proximate to the first electrode and separated from the source by the first electrode. A parasitic element, modeled as a bipolar junction transistor (BJT), is formed by current interactions between the source, the floating drain, and a doped area. The floating drain provides a constant potential region at the base of the BJT, which minimizes ESD damage to the IC.