Abstract:
Methods and apparatus are provided for repairing or replacing a defective cardiac valve including a prosthetic leaflet assembly having an expandable frame with one or more anchors configured to engage a predetermined region of the defective cardiac valve in an expanded deployed state, and at least one prosthetic leaflet coupled to the expandable frame. The prosthetic leaflet assembly is configured such that the prosthetic leaflet is suspended within a flow path of the defective cardiac valve and coapts with, and improves functioning of, one or more native leaflets of the defective cardiac valve.
Abstract:
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchor may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. When the outer sheath is retracted, the prosthetic valve assembly expands to an expanded position such that the valve and valve support expand within the deficient native valve, and the anchor engages the lumen wall.
Abstract:
Methods and apparatus are provided for repairing or replacing a defective cardiac valve including an anchor having a double helix configured to engage the cardiac valve leaflets of a diseased or defective cardiac valve, and a replacement valve body disposed in an expandable stent configured to be disposed within the anchor so that the anchor limits expansion of the expandable stent. The expandable stent of the replacement valve body may be self-expanding or mechanically expanded, e.g., using a balloon catheter or catheter-based mandrel and the valve body may be formed of animal tissue or a synthetic fabric.
Abstract:
A prosthetic valve assembly can include a radially expandable stent. The stent can includea first expandable annular portion that is configured, in an expanded state, to bear against a wall of a native body lumen, a second expandable annular portion that is configured, in an expanded state, to bear against a wall of a native body lumen. The stent can also include a plurality of rods extending between the first annular portion and the second annular portion. The prosthetic valve assembly can further include an implantable prosthetic valve mounted to the stent such that the valve is between the first annular portion and the second annular portion. The prosthetic valve assembly is configured to be delivered by catheterization.
Abstract:
The present invention is an assembly comprising a prosthetic valve to be implanted; a radially expandable stent comprising at least one zone intended to be expanded to allow the stent, in the expanded state, to bear against the wall of the body duct to be fitted with the valve, this bearing making it possible to immobilize this stent with respect to this wall; and means for mounting the valve with respect to the stent, making it possible to connect the valve to the stent in such a way that the placement of the stent allows the valve to be mounted in the body duct, and expansion means such as a balloon catheter being provided to trigger expansion of the stent at the implantation site. According to the invention, the valve and the stent are designed in such a way that, at the moment when the stent is expanded, the valve is situated outside the zone or zones of the stent that are subjected to said expansion means. The invention thus consists in separating the valve and said zone or zones to be expanded, so that the expansion of the stent can be effected with an expansion force suitable for perfect anchoring of this stent in the wall of the body duct to be fitted with the valve, and without any risk of destruction or damage of the valve.
Abstract:
An apparatus for treating a heart valve apparatus includes at least two anchoring elements designed to be anchored at the annulus and/or heart wall of the valve to be treated. Each anchoring element has a support surface. At least one linking element includes a central branch and two curved side branches, one of which is designed to be engaged on the support surface of an anchoring element, while the other is designed to be engaged on the support surface of another anchoring element, the linking element then being designed to be pivoted to a position such that the anchoring elements interconnect and in which the ends of the central branch are located in the vicinity of the support surfaces.
Abstract:
A device and method for treating pathological narrowing of fluid-carrying conduits of the human body (such as blood vessels) in an area of a bifurcation is disclosed. In particular, a stent delivery system configured to carry one or more of a pair of dissimilar stents. At least one of the stents is particularly suited for treating a widened portion of a blood vessel immediately proximal to a bifurcation. The stent delivery system can also include a handpiece adapted to selectively deliver the stents.
Abstract:
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchor may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. When the outer sheath is retracted, the prosthetic valve assembly expands to an expanded position such that the valve and valve support expand within the deficient native valve, and the anchor engages the lumen wall.
Abstract:
An apparatus for treating an area of bifurcation where a principal body conduit separates into at least two secondary conduits comprises a radially expandable first stent body. The first stent body has a substantially conical shape and a first end having a greater diameter than a second end when fully expanded. The first stent body is preferably shaped to be independent of any other stent bodies, and is free of any means for connecting to any other stent bodies when fully expanded.
Abstract:
This invention features a device (1) comprising: at least one radially expansible segment (7, 8) with, in the expanded state, a transversal cross section substantially greater than the transversal cross section of one of the secondary ducts (3); one segment (6) with, in the expanded state, a truncated shape, corresponding to the shape of the bifurcation at the flared transition zone (11) which separates the main duct (2) from the secondary ducts (3), and a flexible link (9) between these two segments (6, 7), enabling their adjustment relative to each other, according to the orientation of the secondary duct (3) receiving the radially expandable segment (7) relative to the flared transition zone (11).