Abstract:
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchor may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. When the outer sheath is retracted, the prosthetic valve assembly expands to an expanded position such that the valve and valve support expand within the deficient native valve, and the anchor engages the lumen wall.
Abstract:
A prosthetic valve assembly can include a radially expandable stent. The stent can includea first expandable annular portion that is configured, in an expanded state, to bear against a wall of a native body lumen, a second expandable annular portion that is configured, in an expanded state, to bear against a wall of a native body lumen. The stent can also include a plurality of rods extending between the first annular portion and the second annular portion. The prosthetic valve assembly can further include an implantable prosthetic valve mounted to the stent such that the valve is between the first annular portion and the second annular portion. The prosthetic valve assembly is configured to be delivered by catheterization.
Abstract:
The invention comprises a surgical instrument including an external tube (2) and two elongated members (4) positioned in said tube (2), each of which includes a distal end (10a) for capturing one of the two tissue zones (M1, M2) to be attached. The instrument (1) may further comprise a catching member (22, 25) for each tissue (M1, M2) to be attached; a rod (15, 16) linked to each catching member (22, 25) enabling tension to move axially, said rod (15, 16) being separable from said catching member (22, 25) when a tension is exerted on it beyond a certain threshold; and a member (17a) forming a stop for locking axially each catching member (22, 25) during said tension.
Abstract:
The present invention is an assembly comprising a prosthetic valve to be implanted; a radially expandable stent comprising at least one zone intended to be expanded to allow the stent, in the expanded state, to bear against the wall of the body duct to be fitted with the valve, this bearing making it possible to immobilize this stent with respect to this wall; and means for mounting the valve with respect to the stent, making it possible to connect the valve to the stent in such a way that the placement of the stent allows the valve to be mounted in the body duct, and expansion means such as a balloon catheter being provided to trigger expansion of the stent at the implantation site. According to the invention, the valve and the stent are designed in such a way that, at the moment when the stent is expanded, the valve is situated outside the zone or zones of the stent that are subjected to said expansion means. The invention thus consists in separating the valve and said zone or zones to be expanded, so that the expansion of the stent can be effected with an expansion force suitable for perfect anchoring of this stent in the wall of the body duct to be fitted with the valve, and without any risk of destruction or damage of the valve.
Abstract:
Systems and methods are provided involving various medical monitoring and/or diagnostic systems. The monitoring and diagnostic systems may involve one or more connected devices (e.g., a smart watch and/or other sensor device) and may continuously monitor an individual and analyze physiological and other data to determine a medical device, condition or event has occurred. The monitoring and diagnostic systems may be a guided self-examination system for determining a medical diagnosis, condition or event. The medical monitoring and diagnostic systems may even be specific to a family or individuals in a certain geographic location.
Abstract:
Systems and methods are provided involving various medical monitoring and/or diagnostic systems. The monitoring and diagnostic systems may involve one or more connected devices (e.g., a smart watch and/or other sensor device) and may continuously monitor an individual and analyze physiological and other data to determine a medical diagnosis, condition or event has occurred. The monitoring and diagnostic systems may be a guided self-examination system for determining a medical diagnosis, condition or event. The medical monitoring and diagnostic systems may even be specific to a family or individuals in a certain geographic location. The systems may determine treatment based on a medical diagnosis or event and may cause the treatment to be delivered to a location of the user or a medical facility.
Abstract:
Devices and methods for sequential aerosolized administration of pharmaceutical agents. A portable device may be used to administer an initial dose of an active formulation comprising at least one first pharmaceutical agent and a subsequent dose of an active formulation comprising at least one second pharmaceutical agent that may have the effect of countering, enhancing, or mitigating the first pharmaceutical agent.
Abstract:
This implant (1) has a frame (2) and a membrane (3) covering this frame; —the frame (2) has: —an elongated base portion (5) formed by two curved or chevron branches being connected to connecting areas (7) of the implant (1) for connecting to the annulus of the mitral valve (100); —a longitudinal hoop (8) extending in a plane substantially perpendicular to the plane in which extends said base portion; —the membrane (3) is flexible and extends from one branch to the other while passing near the hoop (8), this membrane being connected to said branches without being stretched between these branches and this hoop so that the two thereby formed lateral portions (3a) of the membrane (3) on both sides of the implant are able to adopt either a concave shape, outwardly convex, or a recessed shape, outwardly concave.
Abstract:
Apparatus and methods for repairing a cardiac valve, e.g., a mitral valve, are provided. The apparatus may include an expandable frame defining a curved structure in the expanded deployed state and a membrane coupled to the expandable frame. The membrane may curve around a native leaflet, e.g., the posterior leaflet, in a first plane and curve around another leaflet, e.g., the anterior leaflet, in an orthogonal plane. The membrane may be adapted to be suspended in the flow path of the cardiac valve such a first surface of the membrane abuts the native leaflet during systole and a second surface of the membrane abuts the other native leaflet during systole, thereby reducing cardiac valve regurgitation.
Abstract:
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchor may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. When the outer sheath is retracted, the prosthetic valve assembly expands to an expanded position such that the valve and valve support expand within the deficient native valve, and the anchor engages the lumen wall.