摘要:
Described is an epitope tag useful in affinity-based applications. The invention further includes fusion proteins, methods for preparing fusion proteins, nucleic acid molecules encoding these fusion proteins and recombinant host cells that contain these nucleic acid molecules. The invention also relates to nanobodies and other affinity ligands specifically recognizing the epitope tag, and uses thereof in affinity-based applications.
摘要:
Described is an epitope tag useful in affinity-based applications. The invention further includes fusion proteins, methods for preparing fusion proteins, nucleic acid molecules encoding these fusion proteins and recombinant host cells that contain these nucleic acid molecules. The invention also relates to nanobodies and other affinity ligands specifically recognizing the epitope tag, and uses thereof in affinity-based applications.
摘要:
The present invention relates to the field of G protein coupled receptor (GPCR) structural biology and signaling. In particular, the present invention relates to binding domains directed against and/or specifically binding to GPCR:G protein complexes. Also provided are nucleic acid sequences encoding such binding domains and cells expressing or capable of expressing such binding domains. The binding domains of the present invention can be used as universal tools for the structural and functional characterization of G-protein coupled receptors in complex with downstream heterotrimeric G proteins and bound to various natural or synthetic ligands, for investigating the dynamic features of G protein activation, as well as for screening and drug discovery efforts that make use of GPCR:G protein complexes.
摘要:
The invention relates to a genetically modified bacteriophage, pseudovirion or phagemid capable of entering a host cell by binding of its artificial ligand to an artificial receptor present on said host cell. The invention relates also to the use of the genetically modified bacteriophage, pseudovirion or phagemid and of the host cell to screen sequence libraries, including antibody library.
摘要:
The disclosure relates to the field of GPCR structure biology and signaling. In particular, it relates to protein binding domains directed against or capable of specifically binding to a functional conformational state of a G-protein-coupled receptor (GPCR). More specifically, it provides protein binding domains that are capable of increasing the stability of a functional conformational state of a GPCR, in particular, increasing the stability of a GPCR in its active conformational state. The protein binding domains hereof can be used as a tool for the structural and functional characterization of G-protein-coupled receptors bound to various natural and synthetic ligands, as well as for screening and drug discovery efforts targeting GPCRs. Moreover, also encompassed are the diagnostic, prognostic and therapeutic usefulness of these protein binding domains for GPCR-related diseases.
摘要:
The disclosure relates to the field of GPCR structure biology and signaling. In particular, it relates to protein binding domains directed against or capable of specifically binding to a functional conformational state of a G-protein-coupled receptor (GPCR). More specifically, it provides protein binding domains that are capable of increasing the stability of a functional conformational state of a GPCR, in particular, increasing the stability of a GPCR in its active conformational state. The protein binding domains hereof can be used as a tool for the structural and functional characterization of G-protein-coupled receptors bound to various natural and synthetic ligands, as well as for screening and drug discovery efforts targeting GPCRs. Moreover, also encompassed are the diagnostic, prognostic and therapeutic usefulness of these protein binding domains for GPCR-related diseases.
摘要:
The present invention relates to the field of GPCR structure biology and signaling. In particular, the present invention relates to protein binding domains directed against or capable of specifically binding to a functional conformational state of a G-protein-coupled receptor (GPCR). More specifically, the present invention provides protein binding domains that are capable of increasing the stability of a functional conformational state of a GPCR, in particular, increasing the stability of a GPCR in its active conformational state. The protein binding domains of the present invention can be used as a tool for the structural and functional characterization of G-protein-coupled receptors bound to various natural and synthetic ligands, as well as for screening and drug discovery efforts targeting GPCRs. Moreover, the invention also encompasses the diagnostic, prognostic and therapeutic usefulness of these protein binding domains for GPCR-related diseases.