摘要:
A tool that allows three dimensional chip circuit designs to be checked subsequent to 3D design layer mirroring. The 3D chip design is converted to a corresponding 2D chip design by mirroring one or more design layers from the mirrored side of a 3D design and merging those design layers with unmirrored design layers from the unmirrored side of a 3D design. The converted circuit design can be processed by standard verification checks. The tool may also receive design layers corresponding to an integrated circuit that will pass through multiple semiconductor chips. Each design cell is examined to determine if it corresponds to a mirrored or unmirrored side of its respective semiconductor chip. If the respective design cell corresponds to the mirrored side, the design cell is mirrored. All mirrored cells are then merged with the unmirrored design cells in the correct order. The merged design is processed by standard verification checks. The tool also has the capability to create terminal metal abstracts for two adjoining chips. One of the abstracts is mirrored and then merged with the other for connectivity and alignment checking.
摘要:
The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
摘要:
The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
摘要:
The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
摘要:
A structure to prevent propagation of a crack into the active region of a 3D integrated circuit, such as a crack initiated by a flaw at the periphery of a thinned substrate layer or a bonding layer, and methods of forming the same is disclosed.
摘要:
A structure to prevent propagation of a crack into the active region of a 3D integrated circuit, such as a crack initiated by a flaw at the periphery of a thinned substrate layer or a bonding layer, and methods of forming the same is disclosed.
摘要:
A tool that allows three dimensional chip circuit designs to be checked subsequent to 3D design layer mirroring. The 3D chip design is converted to a corresponding 2D chip design by mirroring one or more design layers from the mirrored side of a 3D design and merging those design layers with unmirrored design layers from the unmirrored side of a 3D design. The converted circuit design can be processed by standard verification checks. The tool may also receive design layers corresponding to an integrated circuit that will pass through multiple semiconductor chips. Each design cell is examined to determine if it corresponds to a mirrored or unmirrored side of its respective semiconductor chip. If the respective design cell corresponds to the mirrored side, the design cell is mirrored. All mirrored cells are then merged with the unmirrored design cells in the correct order. The merged design is processed by standard verification checks. The tool also has the capability to create terminal metal abstracts for two adjoining chips. One of the abstracts is mirrored and then merged with the other for connectivity and alignment checking.
摘要:
The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.