摘要:
Power consumption estimation is performed at the system level in a design process, thus allowing early evaluation of feasibility and other considerations relating to logic/DSP design and hardware implementation of a proposed electronic design. Evaluation of the system level power consumption estimate(s) permits adjustment of a system level representation of the proposed electronic design, prior to investment of substantial resources in the electronic design. Other estimates, including other power consumption estimates, may be performed to adjust the proposed electronic design as well. Such estimates may be made in response to gate level power consumption estimates and/or hardware level power consumption estimates.
摘要:
A mask set is described. In one implementation, the mask set includes: a first layer mask including a plurality of first tiles of a first tile size; and a second layer mask including a plurality of second tiles of a second tile size, where the second tile size is different from the first tile size. Also, a method of fabricating a plurality of integrated circuits (ICs) is described. In one implementation, the method includes: using a first layer mask having a first tile size to fabricate a first layer of a first IC of the plurality of ICs and a first layer of a second IC of the plurality of ICs; and using a second layer mask having a second tile size to fabricate a second layer of the first IC, where the second tile size is different from the first tile size.
摘要:
Power consumption estimation is performed at the system level in a design process, thus allowing early evaluation of feasibility and other considerations relating to logic/DSP design and hardware implementation of a proposed electronic design. Evaluation of the system level power consumption estimate(s) permits adjustment of a system level representation of the proposed electronic design, prior to investment of substantial resources in the electronic design. Other estimates, including other power consumption estimates, may be performed to adjust the proposed electronic design as well. Such estimates may be made in response to gate level power consumption estimates and/or hardware level power consumption estimates.
摘要:
Systems including an input/output (I/O) stack and methods for fabricating such systems are described. In one implementation, the methods include stacking an I/O die including I/O elements and excluding a logic element. Also in one implementation, the methods further include stacking an integrated circuit die with respect to the I/O die. The integrated circuit includes logic elements and excludes an I/O element. The separation of the I/O die from the integrated circuit die provides various benefits, such as independent development of each of the dies and more space for the I/O elements on an I/O substrate of the I/O die compared to that in a conventional die. The increase in space allows new process generation of the integrated circuit die in which an increasing number of logic elements are fitted within the same surface area of a substrate of the integrated circuit die.
摘要:
Power consumption estimation is performed at the system level in a design process, thus allowing early evaluation of feasibility and other considerations relating to logic/DSP design and hardware implementation of a proposed electronic design. Evaluation of the system level power consumption estimate(s) permits adjustment of a system level representation of the proposed electronic design, prior to investment of substantial resources in the electronic design. Other estimates, including other power consumption estimates, may be performed to adjust the proposed electronic design as well. Such estimates may be made in response to gate level power consumption estimates and/or hardware level power consumption estimates.
摘要:
Systems including an input/output (I/O) stack and methods for fabricating such systems are described. In one implementation, the methods include stacking an I/O die including I/O elements and excluding a logic element. Also in one implementation, the methods further include stacking an integrated circuit die with respect to the I/O die. The integrated circuit includes logic elements and excludes an I/O element. The separation of the I/O die from the integrated circuit die provides various benefits, such as independent development of each of the dies and more space for the I/O elements on an I/O substrate of the I/O die compared to that in a conventional die. The increase in space allows new process generation of the integrated circuit die in which an increasing number of logic elements are fitted within the same surface area of a substrate of the integrated circuit die.
摘要:
A technique for embedding a microprocessor into an integrated circuit allows on-chip testing and debugging. The microprocessor present on the chip tests and debugs the rest of the chip. Both testing and debugging of a programmable logic device use an embedded microprocessor. Testing is performed by the device manufacturer using a test system. Debugging is performed by a user using a host computer. A PLD includes programmable logic, an embedded microprocessor and separate memory. Testing or debugging routines, patterns, simulations, etc., are downloaded onto the memory. The microprocessor executes the test or debug routine and uploads results to the test system or host computer. The technique is applicable any integrated circuit that can include an embedded microprocessor and associated memory, such as a PLD, an ASIC, a memory chip, or an analog chip.
摘要:
Techniques for monitoring the performance of a programmable circuit and to provide an early warning of a potential failure are provided. A processor monitors the performance of components on a programmable circuit over time. The processor stores performance characteristics for the components in memory. If the performance characteristics for particular components fall outside tolerance ranges, these components may to fail to operate according to specifications. Once the performance characteristics for particular components are outside the tolerance ranges, the processor sends out an alert signal. The alert signal indicates the possibility that the performance of the programmable circuit may violate the specifications in the future. The processor may repair the programmable circuit by re-routing around the problem components.