摘要:
A semiconductor device may include a semiconductor substrate having a surface, a shallow trench isolation (STI) region in the semiconductor substrate and extending above the surface thereof, and a superlattice layer adjacent the surface of the semiconductor substrate and comprising a plurality of stacked groups of layers. More particularly, each group of layers of the superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Moreover, at least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer. The semiconductor device may further include a lateral spacer between the superlattice layer and the STI region and which may include a lower non-monocrystalline semiconductor superlattice portion and an upper dielectric portion.
摘要:
A semiconductor device may include at least one vertical Metal Oxide Semiconductor Field Effect Transistor (MOSFET) on a substrate. The vertical MOSFET may include at least one superlattice including a plurality of laterally stacked groups of layers transverse to the substrate. The vertical MOSFET(s) may further include a gate laterally adjacent the superlattice, and regions vertically above and below the superlattice and cooperating with the gate for causing transport of charge carriers through the superlattice in the vertical direction. Each group of layers of the superlattice may include stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.
摘要:
A semiconductor device which may include a semiconductor layer, and a superlattice interface layer therebetween. The superlattice interface layer may include a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.
摘要:
A semiconductor device which may include a semiconductor layer, and a superlattice interface layer therebetween. The superlattice interface layer may include a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.
摘要:
A semiconductor device may include a substrate, an insulating layer adjacent the substrate, and a semiconductor layer adjacent a face of the insulating layer opposite the substrate. The device may further include source and drain regions on the semiconductor layer, a superlattice adjacent the semiconductor layer and extending between the source and drain regions to define a channel, and a gate overlying the superlattice. The superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
摘要:
A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers adjacent a substrate. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a high-K dielectric layer on the electrode layer, and forming an electrode layer on the high-K dielectric layer and opposite the superlattice.
摘要:
A semiconductor device may include at least one fin field-effect transistor (FINFET) comprising a fin, source and drain regions adjacent opposite ends of the fin, and a gate overlying the fin. The fin may include at least one superlattice including a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
摘要:
This is a method for forming a recessed LOCOS isolation region, which includes the steps of forming a first silicon nitride layer between the pad oxide layer and a polysilicon buffer layer and a second nitride layer over the polysilicon buffer layer. In addition, the method for forming LOCOS isolation regions can include the additional steps of forming a sidewall seal around the perimeter of the active moat regions prior to the field oxidation step. The resulting field oxide isolation regions have provided a low-profile recessed field oxide with reduced oxide encroachment into the active moat region.
摘要:
A semiconductor device may include at least one vertical Metal Oxide Semiconductor Field Effect Transistor (MOSFET) on a substrate. The vertical MOSFET may include at least one superlattice including a plurality of laterally stacked groups of layers transverse to the substrate. The vertical MOSFET(s) may further include a gate laterally adjacent the superlattice, and regions vertically above and below the superlattice and cooperating with the gate for causing transport of charge carriers through the superlattice in the vertical direction. Each group of layers of the superlattice may include stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.
摘要:
A semiconductor device may include a semiconductor substrate and at least one non-volatile memory cell. The at least one memory cell may include spaced apart source and drain regions, and a superlattice channel including a plurality of stacked groups of layers on the semiconductor substrate between the source and drain regions. Each group of layers of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon, which may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A floating gate may be adjacent the superlattice channel, and a control gate may be adjacent the second gate insulating layer.