Abstract:
Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
Abstract:
Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
Abstract:
A computer system for determining Ventricular Far Field contribution in atrial electrograms of a patient. The system includes an interface module configured to receive a plurality of electrical signals generated by a plurality of sensors wherein the plurality of electrical signals relate to a plurality of locations in an atrium of the patient; a reference module configured to determine a reference signal reflecting electrical excitation of the patient's ventricles; and a data processing module. The data processing module is configured to select from the plurality of the received electrical signals such electrical signals which are recorded a number of conditions. The data processing module is further configured to determine a spatio-temporal distribution of the Ventricular Far Field inside the atrium by approximating the spatio-temporal distribution (VFFc) based on signal data of the selected signals by using an approximation model.
Abstract:
A compiler system, computer-implemented method and computer program product for optimizing a program for multi-processor system execution. The compiler includes an interface component configured to load from a storage component program code to be executed by one or more processors (P1 to Pn) of a multi-processor system. The compiler further includes a static analysis component configured to determine data dependencies) within the program code, and further determines all basic blocks of the control flow graph providing potential insertion positions along paths where communication statements can be inserted to enable data flow between different processors at runtime. An evaluation function component of the compiler is configured to evaluate each potential insertion position with regards to its impact on program execution on the multi-processor system at runtime by using a predefined execution evaluation function.
Abstract:
In general, a system can include an interface component configured to receive measurement data from a motion sensor unit physically coupled with a movable part of a body of a user. The measurement data can include sensor data of a sensor of the motion sensor unit that corresponds to a second derivation in time of a trajectory of the motion sensor unit. A data storage component can store technical profiles associated with characters and can include at least a plurality of predefined acceleration profiles. Each acceleration profile can include acceleration data characterizing a movement associated with a specific portion of a potential trajectory of the motion sensor unit in the context of at least a previous or subsequent portion of the potential trajectory. A decoding component can compare the received sensor data with the plurality of predefined acceleration profiles to identify a sequence of portions of the trajectory.
Abstract:
A semiconductor device includes a substrate having at least one electrically insulating portion. A first graphene electrode is formed on a surface of the substrate such that the electrically insulating portion is interposed between a bulk portion of the substrate and the first graphene electrode. A second graphene electrode formed on the surface of the substrate. The electrically insulating portion of the substrate is interposed between the bulk portion of the substrate and the second graphene electrode. The second graphene electrode is disposed opposite the first graphene electrode to define an exposed substrate area therebetween.
Abstract:
An optical system and a method for producing it is disclosed. The optical system has at least two separate optical components and an optical connection between them. In the inventive method, first and second optical component are provided, each having respective beam profiles. An arrangement of the first and second optical components and the form and target position of at least one beam-shaping element are specified. The beam-shaping element is produced using a three-dimensional direct-writing lithography method in situ at the target position to thereby obtain an optical component supplemented by the beam-shaping element. The supplemented optical component is placed and fixed on common base plate to thereby obtain the optical system. The optical systems produced with the present method can be used in optical data transfer, measurement technology and sensors, life sciences and medical technology, or optical signal processing.
Abstract:
A device for converting biomass with a water content of at least 50% to gaseous products includes a reactor filled at least partially with a packing including at least one filler body for accommodating supercritical water and a hydrothermal molten salt. A heater is arranged to heat up the reactor and its content. A first feeding pipe is coupled to the reactor to feed water and salt solution into the reactor. A second feeding pipe is coupled to the reactor to feed to biomass into the reactor. A discharge pipe is coupled to the reactor to discharge gaseous products from the reactor. An outlet is proved in the bottom of the reactor for removing portions of the molten salt.
Abstract:
Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
Abstract:
A catheter has a mapping assembly having a plurality of splines mounted at its distal portion. The splines each have a proximal end disposed at the distal portion of the catheter body and a distal end and configured as a Fibonacci spiral arm that diverges outwardly from the proximal end. The splines have a support arm with shape memory, a non-conductive covering in surrounding relation to the support arm, at least one location sensor mounted at or near the distal end, a plurality of electrodes mounted in surrounding relation to the non-conductive covering, and a plurality of electrode lead wires extending within the non-conductive covering. Each electrode lead wire is attached to a corresponding one of the electrodes.