摘要:
A method for biologically producing methanol is disclosed. In some embodiments, the method includes the following: providing a biomass including ammonia oxidizing bacteria having ammonia monooxygenase enzymes and hydroxylamine oxidoreductase enzymes; feeding ammonia to the ammonia oxidizing bacteria; feeding a non-substrate-organic compound including methane to the ammonia oxidizing bacteria; feeding oxygen and reducing equivalents (in the form of hydroxylamine) to the ammonia oxidizing bacteria; oxidizing the ammonia using the ammonia monooxygenase enzymes in the ammonia oxidizing bacteria to generate hydroxylamine and oxidizing the hydroxylamine using the hydroxylamine oxidoreductase enzymes to form nitrite; and partially oxidizing the methane in the compound using the ammonia monooxygenase enzymes in the ammonia oxidizing bacteria to generate methanol.
摘要:
Methods and systems for producing a biofuel using genetically modified ammonia-oxidizing bacteria (AOB) are disclosed. In some embodiments, the methods include the following: providing an AOB that have been genetically modified to include a particular metabolic pathway to enable them to generate a particular biofuel or chemical; feeding a first source of ammonia to the AOB; feeding carbon dioxide to the AOB; and producing at least the biofuel or chemical, nitrite, and an AOB biomass. In some embodiments, the methods and systems include the following: a bioreactor including AOB that have been genetically modified to include a particular metabolic pathway to enable them to generate a particular biofuel; a first source of ammonia; a source of carbon dioxide; and a electrochemical reactor that is configured to electrochemically reduce nitrite produced in the bioreactor to a second source of ammonia.
摘要:
Methods and systems for increasing the generation of methane from a biomass are disclosed. In some embodiments, the method includes the following: decomposing a biomass to produce an gaseous effluent including methane; decomposing a portion of the gaseous effluent in the presence of catalysts to form a decomposed stream including hydrogen, carbon monoxide; converting substantially all of the carbon monoxide in the decomposed stream to carbon dioxide to produce a feed stream including hydrogen and carbon dioxide; and mixing the feed stream with the biomass to facilitate decomposition of the biomass. In some embodiments, the system includes a bioreactor for generating methane from a biomass and additional devices for producing a feed stream including hydrogen and carbon dioxide that is recirculated to the bioreactor to accelerate the production of methane. The additional devices include a catalytic reforming reactor and a shift reactor.
摘要:
A method of using DOCSIS 1.1 features to allow the addition of ISPs and QOS levels to a single cable modem without having to modify the CMTS is described in the various figures. Instead of using the SID of a data packet to determine the VPN tag of a data packet (DOCSIS 1.0), a service flow is used to identify the appropriate tag. This is done using the DOCSIS 1.1 configuration file. By doing so, the need for creating additional sub-interfaces in the cable modem interface does not arise. Instead, the configuration is modified at the provisioning server, i.e., the DHCP/TFTP server.
摘要:
The present invention relates to compositions and methods for the treatment of infection by enveloped viruses, such as Ebola and Lassa fever viruses.
摘要:
Methods of controlling a nitrification reaction in a biological nitrogen removal reactor to favor partial nitrification of ammonia to nitrite instead of complete oxidation of ammonia to nitrate are disclosed. In some embodiments, the methods include the following: maintaining a pH in the reactor within a range that promotes growth of ammonia oxidizing bacteria; maintaining a concentration of dissolved oxygen in the reactor within a range that limits the ammonia oxidizing bacteria from completing nitrification; selecting an operational solids retention time within a range suitable for maintaining increasing concentrations of the ammonia oxidizing bacteria in the reactor while reducing concentrations of nitrite oxidizing bacteria in the reactor; and increasing a concentration of free ammonia in the reactor thereby inhibiting growth of the nitrite oxidizing bacteria in the reactor.
摘要:
Methods of sustainable wastewater and biosolids treatment using a bioreactor including a microbial fuel cell are disclosed. In some embodiments, the methods include the following: enriching an anode of the microbial fuel cell in the bioreactor with a substantially soluble electron acceptor; growing the bacteria in the presence of the anode enriched with a substantially soluble electron acceptor; oxidizing a substrate using the bacteria to produce free electrons; channeling the free electrons away from a terminal electron acceptor and to the enriched anode, the enriched anode serving as an electron acceptor; and carrying the free electrons from the enriched anode to a cathode of the microbial fuel cell to generate electricity.
摘要:
The disclosed system provides management of multiple flows at a network device interface such as a router interface to assure maximum usage of the bandwidth available on the physical line while guaranteeing minimum reserved rates for individual flows. It accomplishes this by monitoring usage of a peak rate and a reserved rate for each data flow handled by the interface.
摘要:
Methods and assays for treating a subject with a filovirus infection using an agent that inhibits Niemann-Pick CI (NPCI), VPSII, VPSI6, VPSI8, VPS33A, VPS39, VPS41, BLOCISI, BLOCIS2, GNPTAB, PIKFYVE, ARHGAP23 or FIG4. Methods for screening for an agent that treats and/or prevents infection of a subject with a filovirus, where the methods comprise determining whether the agent inhibits one or more of Niemann-Pick CI (NPCI), VPSII, VPSI6, VPSI8, VPS33A, VPS39, VPS41. BLOCISI, BLOCIS2, GNPTAB, PIKFYVE, ARHGAP23 or FIG4, wherein an agent that inhibits one or more of NPCI, VPSII, VPSI6, VPSI8, VPS33A, VPS39, VPS41, BLOCISI, BLOCIS2, GNPTAB, PIKFYVE, ARHGAP23 or FIG4 is a candidate for treating and/or preventing an infection with a filovirus and wherein an agent that does not inhibit NPCI, VPSII, VPSI6, VPSI8, VPS33A. VPS39, VPS41, BLOCISI, BLOCIS2, GNPTAB, PIKFYVE, ARHGAP23 or FIG4 is not a candidate for treating and/or preventing an infection with a filovirus.
摘要:
The present invention relates to compositions and methods for the treatment of infection by enveloped viruses, such as Ebola and Lassa fever viruses.