Abstract:
Systems and methods for producing ammonia. Nitrogen and hydrogen can be supplied to a reaction zone disposed inside an inner shell. The inner shell can be disposed inside an outer shell such that a space is formed therebetween. The reaction zone can include at least one catalyst bed in indirect heat exchange with the space. The nitrogen and hydrogen can be reacted in the reaction zone in the presence of at least one catalyst to form an effluent comprising ammonia. The effluent can be recovered from the inner shell and cooled to provide a cooled effluent stream. A cooling fluid can be provided to the outer shell such that the cooling fluid flows through at least a portion of the space and is in fluid communication with the exterior of the inner shell. At least a portion of the cooled effluent can provide at least a portion of the cooling fluid. The cooling fluid can then be recovered from the outer shell as an ammonia product.
Abstract:
Systems and methods for contacting a liquid, gas, and/or a multi-phase mixture with particulate solids. The system can include a body having a first head and a second head disposed thereon. Two or more discrete fixed beds can be disposed across a cross-section of the body. One or more unobstructed fluid flow paths can bypass each fixed bed, and one or more baffles can be disposed between the fixed beds.
Abstract:
Systems and methods for producing ammonia. Nitrogen and hydrogen can be supplied to a reaction zone disposed inside an inner shell. The inner shell can be disposed inside an outer shell such that a space is formed therebetween. The reaction zone can include at least one catalyst bed in indirect heat exchange with the space. The nitrogen and hydrogen can be reacted in the reaction zone in the presence of at least one catalyst to form an effluent comprising ammonia. The effluent can be recovered from the inner shell and cooled to provide a cooled effluent stream. A cooling fluid can be provided to the outer shell such that the cooling fluid flows through at least a portion of the space and is in fluid communication with the exterior of the inner shell. At least a portion of the cooled effluent can provide at least a portion of the cooling fluid. The cooling fluid can then be recovered from the outer shell as an ammonia product.
Abstract:
A garment is provided which is worn by a wearer and which actively cools the wearer. A heat transfer fluid pathway is provided which feeds the heat transfer fluid through a vest and cap or other heat transfer garment, where the heat transfer fluid draws heat away from the body of the wearer. The pathway is established between an inner layer proximate to the body of the wearer and an outer layer. Dots are provided which connect the inner layer and the outer layer together within the pathway. Fences are provided and borders to channel the heat transfer fluid along the pathway within the garment. A supply of elevated pressure air is optionally provided to maintain optimal contact for efficient heat transfer between the heat exchange fluid within the garment and the body of the wearer.
Abstract:
A reusable, evacuable enclosure comprising a bag with an opening in which to place compressible articles, such as clothing or linen, and a one-way valve in a surface of the bag. Compressible articles may be placed in the bag and sealed from the surrounding environment by placing a seal across the opening. The excess air in the bag may then be removed by placing a cylindrical attachment of a household vacuum cleaner over the one-way valve. Once the excess air is extracted, a cap is placed over the valve to ensure a permanent seal. Removal of excess air reduces the size of the compressible article and inhibits the growth of insects and bacteria, which may damage the contents of the bag. Moreover, the enclosure is impervious to moisture, and so inhibits the growth of mildew.
Abstract:
An acoustic inspection system includes acoustic transducers to transmit and receive continuous acoustic waves at a constant frequency. Changes in phase and/or amplitude of acoustic waves reflected at different times from a fixed reference target through an isothermal transmission medium are detected. The temperature of the acoustic transmission path is controlled in response to the detected phase changes to maintain the wavelength of acoustic waves constant independent of changes in humidity and barometric pressure.
Abstract:
Systems and methods for contacting a liquid, gas, and/or a multi-phase mixture with particulate solids. The system can include a body having a first head and a second head disposed thereon. Two or more discrete fixed beds can be disposed across a cross-section of the body. One or more unobstructed fluid flow paths can bypass each fixed bed, and one or more baffles can be disposed between the fixed beds.
Abstract:
Systems and methods for contacting a liquid, gas, and/or a multi-phase mixture with particulate solids. The system can include a body having a first head and a second head disposed thereon. Two or more discrete fixed beds can be disposed across a cross-section of the body. One or more unobstructed fluid flow paths can bypass each fixed bed, and one or more baffles can be disposed between the fixed beds.
Abstract:
A heat transfer fluid pathway is provided driven by a pump which feeds the heat transfer fluid through a vest and cap or other heat transfer garment, where the heat transfer fluid draws heat away from the body of the wearer. A drinkable heat sink material is located within a removable cartridge located within a heat exchange pouch. The heat transfer fluid passes from the heat transfer garment to the heat exchange pouch where heat drawn from the wearer is transferred to the heat sink material within the cartridge. A temperature control valve is provided along with a bypass line so that an adjustable amount of the heat transfer fluid is routed to the heat exchange pouch for temperature control. A supply of elevated pressure air is optionally provided to maintain optimal contact for efficient heat transfer within the heat exchange garment and the heat exchange pouch.
Abstract:
Apparatus and processes for saturating and purifying syngas are provided. In one or more embodiments, the apparatus can include two packed beds through which water and syngas flow countercurrently. In the first bed, the syngas can be at least partially saturated with water, and in the second bed hydrocarbons, byproducts, or both can be removed from the syngas. Processes for saturating and purifying syngas using the apparatus discussed and described herein are also provided.