Abstract:
A thermosetting asphalt composition includes a blend of an asphalt and an epoxy-functionalized polymer, the epoxy-functionalized polymer being present in an amount within the range of from about 4 to about 30 percent of the combination of asphalt and epoxy-functionalized polymer.
Abstract:
A method for producing asphalt fibers includes supplying molten asphalt to a rotating asphalt spinner, centrifuging asphalt fibers from the asphalt spinner, and collecting the asphalt fibers. The molten asphalt is supplied to the asphalt spinner at a temperature within the range of from about 270.degree. to about 500.degree. F. Also disclosed is a method for integrating asphalt with reinforcement fibers including the steps of establishing a downwardly moving veil of reinforcement fibers, such as glass fibers, and centrifuging asphalt fibers from a rotating asphalt spinner positioned within the veil of reinforcement fibers to integrate the asphalt with the reinforcement fibers. A method for making an asphalt roofing shingle includes the steps of assembling together a mat of asphalt fibers with a mat of reinforcement fibers, coating the assembled mats to form an asphalt coated sheet, applying granules to the asphalt coated sheet, and cutting the asphalt coated sheet into roofing shingles. The invention also includes the asphalt roofing shingle made by this process. Further, the invention includes asphalt highway reinforcement products containing asphalt fibers, and the method of making such products.
Abstract:
Color harmonization is provided for articles of manufacture comprising different substrate materials. A coating composition is selected that can be applied to the different substrate materials while maintaining substantially uniform visual characteristics of the article. The substrates may include flexible materials such as natural leather, synthetic leather, vinyl, foam, textiles and the like. Examples of articles of manufacture include footwear, automotive upholstery and automotive interiors.
Abstract:
A thermosetting asphalt product includes a blend of an asphalt and an epoxy-functionalized polymer, the epoxy-functionalized polymer being present in an amount within the range of from about 4 to about 30 percent of the combination of asphalt and epoxy-functionalized polymer, where the epoxy-functionalized polymer forms a continuous phase within the asphalt product.
Abstract:
Methods for providing a crack-free hard coat are disclosed. The methods include (i) depositing a primer layer having a coefficient of thermal expansion of 300 to 600 μm/min·° C. measured at a temperature range below the glass transition temperature of the primer layer, wherein the primer layer has a film thickness of at least 1 micron and is formed from a thermoplastic acrylic composition, and (ii) depositing the hard coat over at least a portion of the primer layer, wherein the hard coat has a thickness of at least 2 μm and is formed from a composition comprising an alkoxide.
Abstract:
A method for producing asphalt fibers includes supplying molten asphalt to a rotating asphalt spinner, centrifuging asphalt fibers from the asphalt spinner, and collecting the asphalt fibers. The molten asphalt is supplied to the asphalt spinner at a temperature within the range of from about 270.degree. to about 500.degree. F. Also disclosed is a method for integrating asphalt with reinforcement fibers including the steps of establishing a downwardly moving veil of reinforcement fibers, such as glass fibers, and centrifuging asphalt fibers from a rotating asphalt spinner positioned within the veil of reinforcement fibers to integrate the asphalt with the reinforcement fibers. A method for making an asphalt roofing shingle includes the steps of assembling together a mat of asphalt fibers with a mat of reinforcement fibers, coating the assembled mats to form an asphalt coated sheet, applying granules to the asphalt coated sheet, and cutting the asphalt coated sheet into roofing shingles. The invention also includes the asphalt roofing shingle made by this process. Further, the invention includes asphalt highway reinforcement products containing asphalt fibers, and the method of making such products.
Abstract:
A garage door insulation system includes a garage door having a major surface, an insulation layer of mineral fiber insulating material having a major surface, and an asphalt layer positioned between the major surfaces of the garage door and the insulation layer. The asphalt layer provides sound damping for the garage door. Preferably the asphalt layer acts as an adhesive to bond the insulation layer to the garage door. In a preferred embodiment, the major surface of the garage door is contoured, and the asphalt layer and insulation layer are deformable to the contour of the garage door.
Abstract:
A microwave transmit/receive terminal having an antenna and associated feed for receiving vertically and horizontally polarized signals and for transmitting a horizontally polarized signal employs a diplexer to be inserted between the feed and an orthomode coupler. The diplexer is formed of a cylindrical waveguide main body, a first port of which is coupled to the feed for receiving the orthogonally polarized receive signals and for coupling thereto the (horizontally polarized) transmit signal. A second port of the main body is coupled to the orthomode coupler for receiving the horizontally polarized signal to be transmitted and for coupling thereto the vertically polarized receive signals. A rectangular waveguide section is coupled to the cylindrical waveguide main body and forms a third port for coupling the horizontally polarized received signal away from said cylindrical waveguide main body. A first filter is disposed within the cylindrical waveguide main body between the first and second ports for preventing the coupling of horizontally polarized receive signals between the first and second ports. A second filter is coupled with the rectangular waveguide section for passing the horizontally polarized receive signal while preventing the coupling of the horizontally polarized transmit signal to the third port.
Abstract:
Disclosed are heat releasable multi-component composite coatings. These coatings include an under coating and an over coating deposited over at least a portion of the under coating. The under coating is deposited from a coating composition that includes a film-forming resin and thermally expandable capsules having an average diameter of 5 to 25 μm. The over coating layer has a 60 degree gloss of no more than 60 gloss units.
Abstract:
A carrying case with an internal suspension system is provided to reduce acceleration, shock, and the vibrational loads on an electronic device, and which is selectively adjustable to accommodate electronic devices of varying sizes.