Abstract:
There is provided a flat electrode for a surface light source, in which a conductive electrode is formed in a fine strip-shaped pattern on a plane. The flat electrode may comprise a base layer, an electrode pattern formed on the base layer, and a protection layer formed on the electrode pattern. There is also provided an ultra thin surface light source device which comprises: a first substrate and a second substrate which are spaced apart from each other at a predetermined interval; and a first surface electrode formed on the first substrate, and a second surface electrode formed on the second substrate. The surface light source device may further comprise a medium layer formed in at least one of spaces between the first substrate and the first surface electrode and between the second substrate and the second surface electrode.
Abstract:
A surface light source device includes a light source body, a partition member, an isolating member and a voltage applying part. The light source body has an internal space into which discharge gas is injected. The partition wall divides the internal space into discharge spaces. The partition wall has a connection hole that connects the discharge spaces with each other. The isolating member is disposed such that the isolating member corresponds to the connection hole. The isolating member seals the connection hole to isolate the discharge spaces from each other. The voltage applying part induces discharge of the discharge gas in the discharge spaces. Thus, current drift is prevented.
Abstract:
A surface light source device includes a light source body, a partition member, an isolating member and a voltage applying part. The light source body has an internal space into which discharge gas is injected. The partition wall divides the internal space into discharge spaces. The partition wall has a connection hole that connects the discharge spaces with each other. The isolating member is disposed such that the isolating member corresponds to the connection hole. The isolating member seals the connection hole to isolate the discharge spaces from each other. The voltage applying part induces discharge of the discharge gas in the discharge spaces. Thus, current drift is prevented.
Abstract:
In a method of manufacturing a surface light source, a plurality of partition walls is formed on a lower substrate. The partition walls generate a first stress in the lower substrate along a first direction. A reflective layer is formed on the lower substrate. The reflective layer generates a second stress in the lower substrate along a second direction. After forming a fluorescent layer on the reflective layer and beneath an upper substrate, the upper and lower substrates are sealed to form discharge spaces between the upper and lower substrates.
Abstract:
A surface light source includes a plate type light source body having a sealed discharging space formed therein, a plate type electrode unit having a plurality of regions adjacent to at least one major surface of the light source body, and a multiple voltage applying unit operable to apply voltages independently to each of the plurality of regions. In this way, brightness of the surface light source can be controlled independently in each of the plurality of regions and a local dimming for a surface light source can be realized.
Abstract:
A surface treatment layer containing alkali metal oxide is formed on at least one of substrates to form a body of a surface light source. The surface treatment layer may be formed of oxide by coating at least one of cesium, potassium, rubidium, and compound thereof on the surface of the substrate and by performing heat treatment to the substrate. The surface treatment layer containing alkali metal oxide easily emits secondary electrons and reduces firing voltage of the surface light source. Black start is improved, discharging efficiency is increased, and heat generated during the operation is decreased.
Abstract:
There is provided a substrate for a surface light source device, comprising a first secondary electron emission layer including crystalline magnesium oxide (MgO) powder on a surface of the substrate. There is also provided a surface light source device comprising a first substrate and a second substrate facing each other at a predetermined distance between which a discharge space is formed; and an electrode to apply a discharge voltage to the discharge space, wherein a first secondary electron emission layer including crystalline MgO powder is formed on a surface of at least one of the first substrate and the second substrate. Preferably, the crystalline MgO powder is obtained by grinding an MgO sputtering target. There is provided a backlight unit comprising a surface light source device including a discharge space formed between a first substrate and a second substrate, an electrode to apply a discharge voltage to the discharge space, and a first secondary electron emission layer including crystalline MgO powder on a surface of at least one of the first substrate and the second substrate; a case to receive the surface light source device; and an inverter to supply a discharge voltage to the electrode. Preferably, a second secondary electron emission layer ion-exchanged with a secondary electron emitting material is formed under a surface of the substrate.
Abstract:
A surface light source device includes a lamp body, a space dividing member, a discharge gas supplying member and a voltage applying part. The lamp body includes a flat shaped space and a fluorescent layer disposed in the flat shaped space to convert an invisible light into a visible light. The space dividing member divides the flat shaped space into a plurality of discharge spaces. The discharge gas supplying member is disposed to pass through the space dividing member and is fixed to the space dividing member, and supplies the discharge spaces with a discharge gas that generates the invisible light. The voltage applying part applies a discharge voltage to the discharge gas. Therefore, the lifetime of the surface light source device generating a planar light is increased, and the luminance of the light becomes uniform so that the display quality of an image is improved.
Abstract:
A flexible substrate for a display panel and a manufacturing method thereof is disclosed. The flexible substrate may include a first film having a glass cloth located within a first heat-resistant resin, and a second film laminated on at least one side of the first film. The second film may include a second heat-resistant resin. The flexible substrate may further include an intermediate material between the first film and the second film. The intermediate material may be applied to an outer part of the first film and may adhere the first film to the second film.
Abstract:
A surface light source device includes a light source body having a plurality of discharge spaces into which a discharge gas is injected, an external electrode provided on the outer face of the light source body to apply a discharge voltage to the discharge gas so as to generate plasma in the light source body, and a porous internal electrode arranged in the light source body to provide secondary electrons to the plasma, thereby properly maintaining the plasma. The porous internal electrode includes a porous member, and a conductive layer formed on an outer face of the porous member. The secondary electrons are continuously emitted from the porous internal electrode so that an amount of the plasma is steadily maintained.