Abstract:
An axle beam includes a hollow beam body with at least first and second apertures formed in opposing wall portions of the hollow beam body. A stiffener is received within the first and second apertures and is fixed to the hollow beam body at an attachment interface.
Abstract:
A suspension system includes a primary structural support such as an axle beam. To dampen movement of the beam, a leaf spring is attached to longitudinal mainframes which extend parallel to a vehicle centerline. A bracket assembly attaches the beam to the leaf springs by sandwiching the leaf spring therebetween. The bracket assembly also provides a support and mount for an air bag and a shock.
Abstract:
A brake caliper mounting assembly that includes a steering knuckle, a brake caliper, and first and second mounting blocks. The first and second mounting blocks are mounted to the steering knuckle. The brake caliper is mounted on the first and second blocks.
Abstract:
A knuckle includes a spindle to support a wheel and upper and lower bosses extending inwardly of the spindle. The lower boss includes a tie rod arm mount interface. A tie rod arm is received within the tie rod arm mount interface and a steer arm is positioned on an opposite side of the knuckle from the tie rod arm. The steer arm is fixed to the tie rod arm and includes an input mount interface to receive steering input to turn a wheel. The steer arm and tie rod arm are attached to each other with at least one fastener, or can be integrally formed together as a single-piece component.
Abstract:
A vehicle suspension includes trailing arm assemblies that have one end pivotally mounted to a first suspension rail, an opposite end with an air spring support formed with the trailing arm, and an axle mount portion that is mounted to an axle beam. A Panhard arm provides lateral stiffness and includes a first pivotal connection to the trailing arm and a second pivotal connection to a second suspension rail laterally spaced from the first suspension rail.
Abstract:
A vehicle suspension includes trailing arm assemblies that have one end pivotally mounted to a first suspension rail, an opposite end with an air spring support formed with the trailing arm, and an axle mount portion that is mounted to an axle beam. A Panhard arm provides lateral stiffness and includes a first pivotal connection to the trailing arm and a second pivotal connection to a second suspension rail laterally spaced from the first suspension rail.
Abstract:
A suspension for a steering axle includes two links extending from the axle laterally inwardly to be attached to a lateral shackle plate. The lateral shackle plate is pivotally attached to the vehicle frame. The links may be two separate members, or may be a single V-shaped member. The links operate to transfer lateral loads between the two sides of a vehicle receiving the suspension.
Abstract:
An air suspension system for a non-drive steering axle includes a set of air springs supported on an axle beam extending between a pair of rotating wheels. The axle beam defines a lateral axis about which the wheels rotate. A lateral stiffener assembly cooperates with the axle beam, which provides torsional stiffness, to provide high lateral stiffness in the air suspension system. The lateral stiffener assembly includes a first arm that extends from the axle beam transverse to the lateral axis and is positioned on one lateral side of the vehicle. A second arm extends from the axle beam transverse to the lateral axis and is positioned on an opposite lateral side of the vehicle. Each of the first and second arms has one arm end supported by the axle beam and an opposite arm end mounted to a vehicle frame member.
Abstract:
A brake caliper mounting assembly that includes a steering knuckle, a brake caliper, and first and second mounting blocks. The first and second mounting blocks are mounted to the steering knuckle. The brake caliper is mounted on the first and second blocks.
Abstract:
An axle beam includes a hollow beam body with at least first and second apertures formed in opposing wall portions of the hollow beam body. A stiffener is received within the first and second apertures and is fixed to the hollow beam body at an attachment interface.