Abstract:
A steering system comprises a steering wheel and a feedback mechanism in communication with the steering wheel. A control unit communicates with a sensor and controls the feedback mechanism based on the signal from the sensor. The feedback mechanism may cause tactile feedback in the steering wheel. The feedback mechanism is most preferably incorporated by controlling a solenoid valve in a power steering circuit for the vehicle. By repeatedly actuating the solenoid valve, vibration can be caused in the steering wheel.
Abstract:
A housing attaches a stabilizer bar to the body of a vehicle and includes pin stops which actively control the stiffness of the stabilizer bar. A spring positioned about each of the pins provide a retaining spring force on the head of the pin, preventing the pins from moving into an aperture in the housing. When a sensor detects that lateral acceleration or yaw rate exceeds a threshold value, an actuator drives pins to overcome the spring force, pushing the pins into the aperture. When the pins are actuated, a protrusion on the stabilizer bar is trapped between the pins. When the vehicle turns and the stabilizer bar axially twists, the protrusion eventually contacts one the pins, preventing further rotation and stiffening the stabilizer bar.
Abstract:
At least one end of a longitudinally extending control link arm includes a laterally extending tubular portion that receives a bushing assembly. The tubular portion is used to pivotally secure an end of the control link arm to a vehicle structure or axle component. The bushing assembly is positioned within the tubular portion such that radial stiffness is distributed away from a center of the tubular portion. This configuration provides a high conical rate and provides auxiliary roll stiffness such that a sway bar is not required.
Abstract:
An adaptive suspension system for a motor vehicle varies suspension parameters in response to steering input. The system includes a sensor to measure changes in the power assist steering mechanism that indicate a change in vehicle direction and a shock variable suspension member changed in response to a change in vehicle direction. The sensor measures pressure changes in the power assist steering system such that the suspension system is optimized to accommodate specific vehicle maneuvering. In another embodiment, the variable suspension member is in hydraulic communication with the hydraulic circuit of the power assist steering mechanism such that pressure changes caused by steering input triggers changes in the suspension system to accommodate vehicle maneuvering.
Abstract:
An assembly for use as part of a vehicle suspension system includes an adjustable roll rate that is automatically adjusted responsive to maneuvers of the vehicle. A stiffener element is coupled with a stabilizer bar. The stiffener element increases the roll rate responsive to the vehicle wheels being turned. In one example, the stiffener element is a metallic plate that rotates into various positions responsive to the vehicle wheel being turned. The further the wheel turns, the further the plate rotates and the greater the increase in the roll rate.
Abstract:
A steering system is provided for a vehicle including a frame. Upper and lower control arms have first end portions that are pivotally supported on the frame at first spaced apart connections. The control arms also each include second end portions that are pivotally connected to an intermediate support member at second spaced apart connections. A steer knuckle is pivotally supported by the intermediate support member at third spaced apart connections that define a king pin axis. A drive motor is mounted on the intermediate support member and is coupled to the steering knuckle to rotate the steering knuckle about the king pin axis relative to the intermediate support member. A gear set may also be used in conjunction with the drive motor and steering knuckle. The intermediate support member is constrained against forward and aft movement, but is permitted to move upward and downward with the control arms.
Abstract:
A vehicle suspension includes trailing arm assemblies that have one end pivotally mounted to a first suspension rail, an opposite end with an air spring support formed with the trailing arm, and an axle mount portion that is mounted to an axle beam. A Panhard arm provides lateral stiffness and includes a first pivotal connection to the trailing arm and a second pivotal connection to a second suspension rail laterally spaced from the first suspension rail.
Abstract:
At least one end of a longitudinally extending control link arm includes a laterally extending tubular portion that receives a bushing assembly. The tubular portion is used to pivotally secure an end of the control link arm to a vehicle structure or axle component. The bushing assembly is positioned within the tubular portion such that radial stiffness is distributed away from a center of the tubular portion. This configuration provides a high conical rate and provides auxiliary roll stiffness such that a sway bar is not required.
Abstract:
A vehicle suspension includes trailing arm assemblies that have one end pivotally mounted to a first suspension rail, an opposite end with an air spring support formed with the trailing arm, and an axle mount portion that is mounted to an axle beam. A Panhard arm provides lateral stiffness and includes a first pivotal connection to the trailing arm and a second pivotal connection to a second suspension rail laterally spaced from the first suspension rail.
Abstract:
A pair of tension cables are positioned around cams attached to the lower control arms of a vehicle suspension. Each tension cable includes a tension damper responsive to tension in the tension cables. Each tension damper includes a cylinder containing a fluid and a piston including at least one orifice attached to a rod. The piston divides the cylinder into a first and second compartment. The rod in connected to the tension cable. When the tension cable pulls on one end of the rod, the piston is pulled towards the tension cable. The fluid creates resistance in the tension damper as the fluid moves through the orifice from one compartment to the other compartment, damping vehicle roll. Control of the tension dampers can be passive, semi-active, or active.