摘要:
A Very Long Instruction Word (VLIW) processor having an instruction set with a reduced size resulting in a small number of bits being necessary to specify registers. The VLIW processor includes a register file, and first through third operation units, and executes a very long instruction word. Further, the very long instruction word includes a register specifying field which specifies a least one of the registers in the register file and a plurality of instructions. The operand of each instruction includes bits src1, src2, and dst, which indicate whether or not the registers specified by the register specifying field are to be used as the source register and the destination register.
摘要:
A moving image encoding apparatus includes a motion vector detecting unit for executing from a wide and coarse search to a narrow and fine search in a plurality of steps and in a stepwise manner to detect a motion vector of each block in an input image. The motion vector detecting unit includes a block combining unit for generating a combination block, depending on a result of detection in a search step, a search use pixel extracting unit for extracting a search use pixel to be used in a next search step, from the combination block, and a second search combination block searching unit for performing the next search step with respect to the combination block using the search use pixel, and setting a detected motion vector of the combination block as the motion vector of each block of the combination block.
摘要:
A Very Long Instruction Word (VLIW) processor having an instruction set with a reduced size resulting in a small number of bits being necessary to specify registers. The VLIW processor includes a register file, and first through third operation units, and executes a very long instruction word. Further, the very long instruction word includes a register specifying field which specifies a least one of the registers in the register file and a plurality of instructions. The operand of each instruction includes bits src1, src2, and dst, which indicate whether or not the registers specified by the register specifying field are to be used as the source register and the destination register.
摘要:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate as many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
摘要:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate as many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
摘要:
A method of manufacturing a semiconductor device includes depositing a wiring metal layer on a photoresist layer and a portion of a first layer of a gate lead-out electrode which is exposed via an opening, lifting-off a wiring metal layer formed on the photoresist layer forming an interlayer insulation film over the entire surface including the first layer and the wiring metal layer, selectively removing the interlayer insulation film thereby forming a contact via reaching a source region formed in a cell region, and forming a source electrode on the interlayer insulation film and electrically connecting a source electrode with the source region.
摘要:
Flexibility for the design of the pattern layout of the gate lead-out electrode and the source electrode is enhanced without increasing the chip thickness of the semiconductor device. A semiconductor device includes a cell region where plural transistor cells are arranged and a gate finger region different from a region where the cell region is formed. In the cell region, a gate electrode formed of a polysilicon (first conductive material) is formed. A polysilicon layer formed indivisibly with the gate electrode is formed in the gate finger region. An adhesion metal layer and a wiring metal layer are formed above the polysilicon layer by a lift-off method. The gate lead-out electrode is formed of a laminate structure including the polysilicon layer, the adhesion metal layer, and the wiring metal layer. A single layer of interlayer insulation film covering them is formed, on which a source electrode is formed.
摘要:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate as many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
摘要:
A semiconductor device in accordance with the present invention includes a diode 7 that is formed on a semiconductor substrate and serves as a temperature detection element to detect abnormal heat generation, and a thermal conduction layer 102 that is formed between the diode 7 and the semiconductor substrate and has a thermal conductivity higher than that of the semiconductor substrate. In this way, heat generated in a heat generating portion can be swiftly and uniformly conducted over the entire temperature detection element composed of the diode 7 with efficiency. In this way, a semiconductor device capable of detecting temperature with excellent response by the temperature detection element and its manufacturing method can be provided.
摘要:
An address generating unit 102 generates a different write start address (w_adr) of a picture memory 105 depending on an aspect ratio and/or a display plane position of a motion picture to be displayed. A picture writing unit 104 writes data to the picture memory 105, starting at the calculated write start address (w_adr). A picture reading unit 108 uses the write start address (w_adr) as a read start address (r_adr) and reads data from the picture memory 105, starting at the read start address (r_adr).