Abstract:
Disclosed is an antimicrobial peptide having an amino acid sequence of formula presented as (P1)M(nA1X1X2)N(P2)X, wherein P1 is selected from the group consisting of basic amino acids including Arg and Lys; A1 is selected from the group consisting of aromatic amino acids including Trp, Phe and Ala; X1 is selected from the group consisting of basic amino acids or nonpolar amino acids, including Arg, Lys, Val, Leu, Ala and Ile; X2 is selected from the group consisting of basic amino acids or nonpolar amino acids, including Arg, Lys, Val, Leu, Ala and Ile; P2 is selected from the group consisting of basic amino acids including Arg and Lys; and the numbers of M and X are respectively 0˜2; when N>2, A1 is Ala and the Ala residues are less than N−2.
Abstract:
Enclosed is an antagonist, which includes a peptide chain represented by an amino acid sequence. The amino acid sequence has a short sequence, C-X1X2X3X4X5-N, which is situated before and neighbored to the third cysteine (Cys, C) of the N-terminus, wherein X1 is an amino acid with aromatic ring, hydrophobic property or long chain, and X2, X3, X4 and X5 are glutamine (G), serine (S), alanine (A) and proline (P) respectively. In one embodiment, X1 is phenylalanine (F). The present antagonists can be used to inhibit or treat with the diseases caused by the activated cells expressing CXCR1 and/or CXCR2 receptor, for example, the acute or chronic inflammatory reaction induced with polymorphonuclear neutrophils (PMNs) expressing CXCR1 and/or CXCR2 receptor, and angiogenesis accompanied by tumor growth inhibition.
Abstract:
The present disclosure provides a method for fabricating a semiconductor device using a track pipeline system. The method includes storing a plurality of chemicals in a plurality of storage units of the system, wherein each storage unit is operable to store one of the chemicals, mixing the chemicals into a mixture, and dispensing the mixture onto a wafer using a nozzle of the system.
Abstract:
A reticle includes a reticle body having a first surface, a pattern disposed on the first surface of the reticle body, and at least a protection layer disposed on the first surface of the reticle body. The protection layer is in contact with the first surface of the reticle body.
Abstract:
A method for improving illumination uniformity in an exposure process is described, wherein a light source, a reticle and a projection system are used to expose a substrate in the exposure process. A realtime adjustable gray filter like a gray LCD panel is placed in the light path between the light source and the exposed substrate to compensate the illumination nonuniformity on the substrate in real time.
Abstract:
A method for reducing critical dimension is provided. An exposure process and a develop process are performed on a photoresist layer. An optical trim exposure process is performed between the exposure process and the development process or before the exposure process. The optical trim expsoure process is performed to expose the photoresit layer by using a fully open mask of which the transmission rate is greater than zero. Because of the performance of the optical trim exposure process, the critical dimension of the photoresist layer can be reduced without substantially changing the characteristics of the photoresist layer.
Abstract:
Enclosed is an antagonist, which includes a peptide chain represented by an amino acid sequence. The amino acid sequence has a short sequence, C-X1X2X3X4X5-N, which is situated before and neighbored to the third cysteine (Cys, C) of the N-terminus, wherein X1 is an amino acid with aromatic ring, hydrophobic property or long chain, and X2, X3, X4 and X5 are glutamine (G), serine (S), alanine (A) and proline (P) respectively. In one embodiment, X1 is phenylalanine (F). The present antagonists can be used to inhibit or treat with the diseases caused by the activated cells expressing CXCR1 and/or CXCR2 receptor, for example, the acute or chronic inflammatory reaction induced with polymorphonuclear neutrophils (PMNs) expressing CXCR1 and/or CXCR2 receptor, and angiogenesis accompanied by tumor growth inhibition.
Abstract:
An audio processing system is provided. The audio processing system has a sound receiving device configured to receive sounds and output an audio signal; a controller, electrically connected to the sound receiving unit, configured to write the audio signal to an audio signal buffer with a first frequency; and an audio processing unit, electrically connected to the controller, configured to read the audio signal from the audio signal buffer with a second frequency to perform audio processing, wherein the controller further dynamically adjusts the second frequency, so that the second frequency approaches the first frequency according to a convergence curve.
Abstract:
The present invention is related to a high salt-resistance antibacterial peptide by increasing width of side chain of amino acids and/or increasing length of side chain of amino acids in the antibacterial peptide; and a method for increasing salt-resistance of antibacterial peptide by increasing width of side chain and/or increasing length of side chain in the antibacterial peptide.
Abstract:
Disclosed is an antimicrobial peptide having an amino acid sequence of formula presented as (P1)M(nA1X1X2)N(P2)X, wherein P1 is selected from the group consisting of basic amino acids including Arg and Lys; A1 is selected from the group consisting of aromatic amino acids including Trp, Phe and Ala; X1 is selected from the group consisting of basic amino acids or nonpolar amino acids, including Arg, Lys, Val, Leu, Ala and Ile; X2 is selected from the group consisting of basic amino acids or nonpolar amino acids, including Arg, Lys, Val, Leu, Ala and Ile; P2 is selected from the group consisting of basic amino acids including Arg and Lys; and the numbers of M and X are respectively 0˜2; when N>2, A1 is Ala and the Ala residues are less than N−2.