Abstract:
A method and device for autofocusing in a microscope (11), wherein two preferably spot-shaped, markers (12) are generated on an object, the spacing (d) of the markers representing an indication of the defocusing of a working plane (9) in the object from the focal plane (10) of the microscope (11). A focus drive (6) displaces the working plane (9) into the focal plane (10) as a function of the marker spacing (d). In order to allow rapid and exact focusing to be performed, a detector (4) acquires an image of the markers (12) generated on the object, an evaluation unit (7a) determines the spacing of the markers (12), and a control unit (7b) adjusts, as a function of the determined marker spacing (d), the speed of the focus drive (6) at which the working plane (9) is displaced into the focal plane (10).
Abstract:
A surgical fluorescence stereomicroscope (1) for detecting and operating on fluorescing areas of an object field (7) is described, which microscope encompasses a first illumination device (2) for irradiating the object field (7) with light in an excitation wavelength region (E). The surgical fluorescence stereomicroscope (1) further encompasses an observation beam path (21) for guiding the reflected and emitted light received from the object field (7), and a first observation filter (9) in the observation beam path (21) which is transparent in the excitation wavelength region (E) and in a fluorescence wavelength region (F). According to the present invention, means (10a to 10c) for controllable attenuation in the excitation wavelength region (E) are additionally arranged in the observation beam path.
Abstract:
The present invention relates to a stereo microscope (20) with a first and a second main beam path (21, 22), the spacing of which defines a stereo base (23), wherein an axis of the microscope (24) extends through the middle of the stereo base (23) parallel to the main beam paths (21, 22), and with an optical beam splitter device (30) for producing an assistant beam path (31) and a documentation beam path (32), wherein the direction of the assistant beam path (31) in a first position is rotated by 180° to the direction of the assistant beam path (31) in a second position of the beam splitter device (30), and the decoupled documentation beam path (32) in both positions of the beam splitter device (30) is in each case perpendicular to the decoupled assistant beam path (31), and wherein in both the first and second positions of the beam splitter device (30) the assistant beam path (31) can in each case be decoupled at least from the first main beam path (21) and the documentation beam path (32) can in each case be decoupled at least from the second main beam path (22).
Abstract:
The present invention relates to an illuminating device for an operating microscope comprising two observation beam paths (152, 154) for a first observer (main surgeon) and two observation beam paths (156, 158) for a second observer (assistant), having an illuminating system (102; 106a, 108a) for providing two parallel illuminating beam paths (106, 108) and a deflecting device (118, 120), for deflecting the parallel illuminating beam paths onto an object (200) that is to be observed, the deflecting device comprising a first semitransparent deflector element (118) which is associated with a first observation beam path (154) of the first observer and a first observation beam path (156) of the second observer, and a second semitransparent deflector element (120), which is associated with a second observation beam path (152) of the first observer and a second observation beam path (158) of the second observer, the first illuminating beam path (106) acting exclusively on the first deflector element (118) and the second illuminating beam path acting exclusively on the second deflector element.
Abstract:
The present invention relates to an illuminating apparatus for an operating microscope comprising two observation beam paths (152, 154) for a first observer (main surgeon) and two observation beam paths (156, 158) for a second observer (assisting surgeon), comprising an illuminating system (102; 106a, 108a, 172) and deflecting means (118, 120, 170), for deflecting light emanating from the illumination system onto an object (200) that is to be observed, wherein the deflecting device comprises a first deflecting element (118) which is associated with a first observation beam path (152) of the first observer and a first observation beam path (156) of the second observer, and a second deflecting element (120) which is associated with a second observation beam path (154) of the first observer and a second observation beam path (158) of the second observer.
Abstract:
Disclosed is an endoscopic system comprising an excitation beam source located in a proximal supply unit, an optical radiation transmission path in an insertion piece, and a fluorescence converter at the distal end. A laser diode that emits in the shortwave visible spectral range is used as an excitation beam source while a glass fiber is used as an optical transmission path. The fluorescence converter is suitable for converting into white light and is embodied as a fluorescent element that is mounted downstream of the light emergence surface of the glass fiber as a separate, interchangeable part. Said endoscopic system is characterized in that the distal end of the glass fiber and the fluorescent element are inserted into a lighting fixture which has a light emergence opening that widens in a funnel-shaped manner. Alternatively, the fluorescent element is disposed in a replaceable head which can be coupled to the insertion piece and encompasses additional optical and heat-dissipating components in order to generate an illumination beam cluster and/or measurement beam cluster.
Abstract:
An illumination device for a microscope has a variable working distance (d, d′), at which an object is illuminated obliquely from two different directions. Light from a light source is split into at least two illumination beam paths. In order to adapt to the different working distances, the light is subjected to an angle change before splitting or, if after splitting, then respectively by the same amount in both beam paths. A deviating element with at least two reflective surfaces is arranged in one of the illumination beam paths to induce a change in an angle at which one of the illumination beam paths strikes the object, in the same sense as another illumination beam path. The reflective surfaces may be arranged so that the illumination beam paths strike essentially the same region of the optical axis even with different working distances.
Abstract:
An endoscopic video measurement system having a proximal operating part, an insertion part, and a replaceable head that can be inserted thereon, and where the operating part contains a connection for supplying electrical and optical power, optical transmission means for the lens illumination are provided in the insertion part for an electronic image sensor positioned in the distal end portion, and the replaceable head contains optical transmission means for the lens illumination and lens imaging, is characterized in that, in the insertion part, for transmitting a measurement beam a single-mode optical fiber is provided, with which an optical system positioned in the distal end part of the insertion part for producing a collimated sample beam bundle is associated.
Abstract:
The present invention relates to an afocal zoom system for a microscope with a shutter for controlling the depth of focus of the microscopic image produced by an object, wherein at least one shutter is disposed in front of the first lens group of the zoom system, viewed from the object, in the direction of the beam path passing through the zoom system, and/or at least one shutter is disposed on a lens group of the zoom system, the diameter of which can be varied in order to control the depth of focus, without causing vignetting of the edge beams.
Abstract:
A method and device for autofocusing in a microscope (11), wherein two preferably spot-shaped, markers (12) are generated on an object, the spacing (d) of the markers representing an indication of the defocusing of a working plane (9) in the object from the focal plane (10) of the microscope (11). A focus drive (6) displaces the working plane (9) into the focal plane (10) as a function of the marker spacing (d). In order to allow rapid and exact focusing to be performed, a detector (4) acquires an image of the markers (12) generated on the object, an evaluation unit (7a) determines the spacing of the markers (12), and a control unit (7b) adjusts, as a function of the determined marker spacing (d), the speed of the focus drive (6) at which the working plane (9) is displaced into the focal plane (10).