Abstract:
The invention relates to a gliding element of an internal combustion engine, especially a piston ring, having a DLC coating of the ta-C type which has at least one residual stress gradient.
Abstract:
The invention relates to a sliding element, such as a piston ring, comprising a coating on at least one surface comprising, form inside to outside, a bonding layer, a metal DLC layer preferably containing tungsten, and a metal-free DLC layer doped with nitrogen at least in some regions, wherein said sliding element is characterized in that the nitrogen content in the metal-free DLC layer is graduated.
Abstract:
A sliding element, particularly a piston ring for an internal combustion engine, includes a substrate, and a wear-protection layer, obtained by thermal spraying of a powder comprising the element proportions 2-50 percent by weight iron, FE; 5-60 percent by weight tungsten, W; 5-40 percent by weight chrome, Cr; 5-25 percent by weight nickel, Ni; 1-5 percent by weight molybdenum, Mo; 1-10 carbon, C and 0.1-2 percent by weight silicon, Si; and a running-in layer, obtained by thermal spraying of a powder comprising the element proportions 60-95 percent by weight nickel; 5-40 percent by weight carbon.
Abstract:
A sliding element, and in particular a piston ring, is provided with a DLC coating on a substrate of the sliding element. A material softer than DLC is embedded into the surface of the DLC coating with which the sliding element will come into contact with a sliding partner, against which the sliding element will slide.
Abstract:
A sliding member for an internal combustion engine includes: a substrate and a coating obtainable by thermally spraying a powder, having the element proportions of 55 to 75 wt % of chromium, Cr; 3 to 10 wt % of silicon, Si; 18 to 35 wt % of nickel, Ni; 0.1 to 2 wt % of molybdenum, Mo; 0.1 to 3 wt % of carbon, C; 0.5 to 2 wt % of boron, B; and 0 to 3 wt % of iron, Fe.
Abstract:
The invention relates to a gliding element of an internal combustion engine, especially a piston ring, having a DLC coating of the ta-C type which has at least one residual stress gradient.
Abstract:
In a method for coating a sliding element, in particular a piston ring or a cylinder liner of an internal combustion engine, DLC phases are embedded into a hard material layer as said hard material layer is deposited. A sliding element, such as a piston ring or a cylinder liner of an internal combustion engine, comprises a hard material layer with embedded DLC phases.
Abstract:
A sliding element, such as a piston ring, for use in diesel or highly supercharged spark-ignition engines with iron-based mating running elements is provided. The sliding element includes a base material made of cast iron or steel and a coating. The coating includes a CrN layer, an Me(CxNy) layer, and a DLC layer extending from the inside to the outer side respectively. The DLC layer consists of a metal-containing substructure layer and a metal-free DLC top layer. The Me(CxNy) layer is crystalline and Me is tungsten (W), chromium (Cr), or Silicon (Si). The hardness of the metal-free DLC top layer is harder than the metal-containing substructure layer.
Abstract:
A sliding element, in particular a piston ring, preferably made of cast iron or steel, has a coating which has a plurality of layers of CrN (14) and a-C:H:Me coatings (16) alternately. In a method for coating the sliding element, in particular a piston ring, preferably made of cast iron or steel, a plurality of layers of CrN and a-C:H:Me coatings are applied alternately.
Abstract:
A sliding element, in particular piston ring, has on at least one running surface, from the inside outwards, a coating having a metal-containing adhesive layer and a hydrogen-free amorphous carbon layer with a thickness of at least 10 μm.In a process for the production of a sliding element, in particular a piston ring, coating with a metal-containing adhesive layer and a hydrogen-free amorphous carbon layer in a thickness of at least 10 μm is carried out.