Abstract:
We describe the novel use of a sugar-containing hydrogels as very highly porous, aqueous support material for the immobilization of oligonucleotides, peptides, proteins, antigens, antibodies, polysaccharides, and other biomolecules for sensor applications. The unusually large sizes of the interconnected pores allow large target molecules to pass rapidly into and through the gel and bind to immobilized biomolecules. An additional advantage of the sugar-containing hydrogels are their extremely low non-specific absorption of labeled target molecules, providing low background levels. State-of-the-art hydrogel materials do not have this type of homogeneous interconnected macroporosity, thus large target molecules cannot readily diffuse through them. In addition, they nearly always experience non-specific (background) absorption of labeled target molecules, limiting their usefulness in sensor applications. This invention provides a method for preparing a sugar polyacrylate hydrogel with functional chemical groups which covalently bond oligonucleotides and peptides. A method for copolymerizing acrylate-terminated oligonucleotides with sugar acrylate monomers and diacrylate cross-linking agents is also provided.
Abstract:
We describe the novel use of a sugar-containing hydrogels as very highly porous, aqueous support material for the immobilization of oligonucleotides, peptides, proteins, antigens, antibodies, polysaccharides, and other biomolecules for sensor applications. The unusually large sizes of the interconnected pores allow large target molecules to pass rapidly into and through the gel and bind to immobilized biomolecules. An additional advantage of the sugar-containing hydrogels are their extremely low non-specific absorption of labeled target molecules, providing low background levels. State-of-the-art hydrogel materials do not have this type of homogeneous interconnected macroporosity, thus large target molecules cannot readily diffuse through them. In addition, they nearly always experience non-specific (background) absorption of labeled target molecules, limiting their usefulness in sensor applications. This invention provides a method for preparing a sugar polyacrylate hydrogel with functional chemical groups which covalently bond oligonucleotides and peptides. A method for copolymerizing acrylate-terminated oligonucleotides with sugar acrylate monomers and diacrylate cross-linking agents is also provided.
Abstract:
An Internet-based, or Web-based, customizable clinical (patients' records and care) information system (“CIS”) is provided. More specifically, the clinical information system is Web/Internet based, whether it utilizes a browser-type user interface or a distributed application-type user interface; the clinical information system may include automatic disease staging and associated treatment planning and/or scheduling; the clinical information system may track certain events/submissions and sort such events/submissions into a physician's in-box for on-line approval by the physician, where such approval causes the event/submission to become an addendum to the patient's record; the clinical information system may be customizable by an administrator; the clinical information system may establish, and make available for on-line review and approval, patient care or standing orders over a weekend; the clinical information system may utilize patients' photographs to ensure accurate identification and proper treatment; and the clinical information system may create and store an audit trail record for all significant events.
Abstract:
The wall thickness of lipid microtubules are controlled by selecting a methanol/water system and determining the required amount of a lipid to form the desired wall thickness. The lipid is dissolved in a small portion of the heated methanol and that clear solution is added to the remaining amount of the heated methanol/water system. By slowly cooling the solution, microtubules are formed which have the desired wall thickness. Preferred microtubules have a wall thickness of just 2 bilayers and they are robust so they can be further coated. They can be made with a large aspect ratio and with lengths of greater than 250 microns. The process permits production of microtubules in very high yields.
Abstract:
Lipid microtubules having a controlled bilayer structure and high aspect io are formed in a methanol/ethanol/water solvent system. The lipid microtubules may then be catalyzed (e.g., with a palladium/tin catalyst) in an acidified catalytic bath having no more than about 30 g of catalytic salts. These catalyzed microtubules are then metallized using a diluted plating bath with replenishment of the plating bath as needed to obtain the desired metallization thickness.