摘要:
A method and apparatus for providing ESD event protection for a circuit using a source or bulk pump to increase the bulk and/or source potential level during an ESD event. The apparatus comprises a protection circuit that, in response to an ESD event, limits the voltage formed between two terminals of a transistor by adjusting a potential level on the second terminal.
摘要:
An integrated circuit includes a protected circuit. The integrated circuit further includes a silicon controlled rectifier including a sequence of a first p-type region, a second n-type region, a third p-type region and a fourth n-type region. The first n-type region is electrically coupled to the protected circuit. The integrated circuit further includes a first pn junction diode including a first semiconductor zone and one of the group including the second n-type region and the third p-type region as a second semiconductor zone. A conductivity type of the first semiconductor zone is opposite to the conductivity type of the second semiconductor zone. The integrated circuit further includes a first trigger circuit electrically coupled to the first semiconductor zone.
摘要:
An electrostatic discharge (ESD) MOS transistor including a plurality of interleaved fingers, where the MOS transistor is formed in an I/O periphery of and integrated circuit (IC) for providing ESD protection for the IC. The MOS transistor includes a P-substrate and a Pwell disposed over the P-substrate. The plurality of interleaved fingers each include an N+ source region, an N+ drain region, and a gate region formed over a channel region disposed between the source and drain regions. Each source and drain includes a row of contacts that is shared by an adjacent finger, wherein each contact hole in each contact row has a distance to the gate region defined under minimum design rules for core functional elements of the IC. The Pwell forms a common parasitic bipolar junction transistor base for contemporaneously triggering each finger of the MOS transistor during an ESD event.
摘要:
An electrostatic discharge (ESD) protection device having a silicon controlled rectifier (SCR) for protecting circuitry of an integrated circuit (IC). The SCR includes a N-doped layer disposed over a substrate and a first P doped region disposed over the N-doped layer. At least one first N+ doped region forming a cathode is disposed over the P-doped region and coupled to ground. The at least one first N+ doped region, first P-doped region, and N-doped layer form a vertical NPN transistor of the SCR. A second P doped region forming an anode is coupled to a protected pad. The second P doped region is disposed over the N-doped layer, and is laterally positioned and electrically isolated with respect to the first P doped region. The second P doped region, N-doped layer, and first P doped region form a lateral PNP transistor of the SCR.
摘要:
A silicon-on-insulator (SOI) electrostatic discharge (ESD) protection device that can protect very sensitive thin gate oxides by limiting the power dissipation during the ESD event, which is best achieved by reducing the voltage drop across the active (protection) device during an ESD event. In one embodiment, the invention provides very low triggering and holding voltages. Furthermore, the SOI protection device of the present invention has low impedance and low power dissipation characteristics that reduce voltage build-up, and accordingly, enable designers to fabricate more area efficient protection device
摘要:
An electronic device having an LV-well element trigger structure that reduces the effective snapback trigger voltage in MOS drivers or ESD protection devices. A reduced triggering voltage facilitates multi-finger turn-on and thus uniform current flow and/or helps to avoid competitive triggering issues.
摘要:
An electrostatic discharge (ESD) protection circuit for a semiconductor integrated circuit (IC) that protects core circuitry of the IC during normal operations, and shunts ESD events during non-powered mode of the IC. The ESD protection circuitry includes a multi-fingered MOS transistor, each finger respectively adapted for coupling between an I/O pad and a first supply line of the IC. An ESD detector is coupled to the I/O pad via a first terminal, and a second terminal is adapted for coupling to a second supply line potential of the IC. A parasitic capacitance is formed between the second supply line potential of the IC and the first supply line potential. A transfer circuit is coupled to a third terminal of the ESD detector and is adapted for biasing at least one gate respectively associated with at least one finger of the multi-fingered MOS transistor.
摘要:
An electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit (IC) having protected circuitry. In one embodiment, the ESD protection circuit includes a pad adapted for connection to a first voltage source of a protected circuit node of the IC, and a silicon controlled rectifier (SCR) having an anode adapted for coupling to the first voltage source, and a cathode adapted for coupling to a second voltage source. At least one capacitive turn-on device respectively coupled between at least one of a first gate of the SCR and the first voltage source, and a second gate of the SCR and the second voltage source.
摘要:
An electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit (IC) having protected circuitry is provided herein. In one embodiment, a circuit for protecting an integrated circuit from ESD includes a protected circuit node in the integrated circuit, a multiple stage transistor pump circuit coupled to the protected circuit node, and an electrostatic discharge protection circuit having a trigger coupled to the multiple stage transistor pump circuit. The multiple stage transistor pump circuit may comprise a Darlington transistor pump circuit.
摘要:
A two-dimensional silicon controlled rectifier (2DSCR) having the anode and cathode forming a checkerboard pattern. Such a pattern maximizes the anode to cathode contact length (the active area) within a given SCR area, i.e., effectively increasing the SCR width. Increasing the physical SCR area, increases the current handling capabilities of the SCR.