Abstract:
A semiconductor circuit device is disclosed in which an impurity ion implanted region is formed in a substrate, a Schottky junction type gate electrode is formed above the impurity ion implanted region, and a source electrode and a drain electrode are formed on both sides of the gate electrode. In this device, an InGaP barrier layer is formed between the substrate and the electrodes, a cap layer comprising a semiconductor free from In as a constituent is formed between the InGaP barrier layer and the electrodes, and the gate electrode is formed of a refractory metal.
Abstract:
A semiconductor circuit device is disclosed in which an impurity ion implanted region is formed in a substrate, a Schottky junction type gate electrode is formed above the impurity ion implanted region, and a source electrode and a drain electrode are formed on both sides of the gate electrode. In this device, an InGaP barrier layer is formed between the substrate and the electrodes, a cap layer comprising a semiconductor free from In as a constituent is formed between the InGaP barrier layer and the electrodes, and the gate electrode is formed of a refractory metal.
Abstract:
A new design concept is presented and demonstrated for the fabrication of active and passive components in integrated circuit (IC) devices for microwave signal transmission. High circuit packing density is desirable but the current configurations of the conventional flat strip type conductors present physical limitations to achieving such an objective. The new conductor configuration not only overcomes such circuit packing problems of the conventional line design, but provides additional improvements in performance parameters, such as lower circuit resistance and lower parasitic interactions; an ability to fabricate circuits to design specifications and to improve reliability at low cost. The new concept has been applied to the fabrication of transmission lines, capacitors, inductors, air bridges and to formulating the fabrication steps for a FET. Polyimide film enables an improved fabrication step to be performed in the invention, and a new processing technique for polyimide material has also been demonstrated.
Abstract:
A new design concept is presented and demonstrated for the fabrication of active and passive components in integrated circuit (IC) devices for microwave signal transmission. High circuit packing density is desirable but the current configurations of the conventional flat strip type conductors present physical limitations to achieving such an objective. The new conductor configuration not only overcomes such circuit packing problems of the conventional line design, but provides additional improvements in performance parameters, such as lower circuit resistance and lower parasitic interactions; an ability to fabricate circuits to design specifications and to improve reliability at low cost. The new concept has been applied to the fabrication of transmission lines, capacitors, inductors, air bridges and to formulating the fabrication steps for a FET. Polyimide film enables an improved fabrication step to be performed in the invention, and a new processing technique for polyimide material has also been demonstrated.
Abstract:
A new design concept is presented and demonstrated for the fabrication of active and passive components in integrated circuit (IC) devices for microwave signal transmission. High circuit packing density is desirable but the current configurations of the conventional flat strip type conductors present physical limitations to achieving such an objective. The new conductor configuration not only overcomes such circuit packing problems of the conventional line design, but provides additional improvements in performance parameters, such as lower resistance and lower parasitic interactions, an ability to fabricate circuits to design specifications and to improve reliability at low cost. The new concept has been applied to the fabrication of transmission lines, capacitors, inductors, air bridges and to formulating the fabrication steps for a FET. Polyamide film enables an improved fabrication step to be performed in the invention, and a new processing technique for polyimide material has also been demonstrated.
Abstract:
A new design concept is presented and demonstrated for the fabrication of active and passive components in integrated circuit (IC) devices for microwave signal transmission. High circuit packing density is desirable but the current configurations of the conventional flat strip type conductors present physical limitations to achieving such an objective. The new conductor configuration not only overcomes such circuit packing problems of the conventional line design, but provides additional improvements in performance parameters, such as lower circuit resistance and lower parasitic interactions; an ability to fabricate circuits to design specifications and to improve reliability at low cost. The new concept has been applied to the fabrication of transmission lines, capacitors, inductors, air bridges and to formulating the fabrication steps for a FET. Polyimide film enables an improved fabrication step to be performed in the invention, and a new processing technique for polyimide material has also been demonstrated.