Abstract:
The present invention generally provides apparatus and method for processing a semiconductor substrate. Particularly, embodiments of the present invention relate to a method and apparatus for forming semiconductor devices having a conformal silicon oxide layer formed at low temperature. One embodiment of the present invention provides a method for forming a semiconductor gate structure. The method comprises forming a gate stack on a semiconductor substrate, forming a conformal silicon oxide layer on the semiconductor substrate using a low temperature cyclic method, and forming a spacer layer on the conformal silicon oxide layer.
Abstract:
A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
Abstract:
A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
Abstract:
A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
Abstract:
The present invention generally provides apparatus and method for processing a semiconductor substrate. Particularly, embodiments of the present invention relate to a method and apparatus for forming semiconductor devices having a conformal silicon oxide layer formed at low temperature. One embodiment of the present invention provides a method for forming a semiconductor gate structure. The method comprises forming a gate stack on a semiconductor substrate, forming a conformal silicon oxide layer on the semiconductor substrate using a low temperature cyclic method, and forming a spacer layer on the conformal silicon oxide layer.
Abstract:
Methods of depositing amorphous carbon films on substrates are provided herein. The methods reduce or prevent plasma-induced charge damage to the substrates from the deposition of the amorphous carbon films. In one aspect, an initiation layer of amorphous carbon is deposited at a low RF power level and/or at a low hydrocarbon compound/inert gas flow rate ratio before a bulk layer of amorphous carbon is deposited. After the deposition of the initiation layer, the RF power, hydrocarbon flow rate, and inert gas flow rate may be ramped to final values for the deposition of the bulk layer, wherein the RF power ramp rate is typically greater than the ramp rates of the hydrocarbon compound and of the inert gas. In another aspect, a method of minimizing plasma-induced charge damage includes depositing a seasoning layer on one or more interior surfaces of a chamber before the deposition of the amorphous carbon film on a substrate therein or coating the interior surfaces with an oxide or dielectric layer during manufacturing.
Abstract:
Methods for reducing plasma instability for plasma depositing a dielectric layer are provided. In one embodiment, the method includes providing a substrate in a plasma processing chamber, flowing a gas mixture into the chamber, applying an RF power to an electrode to form a plasma in the chamber, and collecting DC bias information. In another embodiment, the method for plasma processing includes obtaining of DC bias information over a plurality of plasma generation events, and determining an RF power application parameter from the DC bias information.
Abstract:
A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.