Abstract:
An electronic watch in which the display on a liquid crystal display 236 is prohibited when the detected output voltage of a secondary battery 220 drops to a first predefined voltage. An initialization process is performed when the detected voltage of the secondary battery 220 drops to a second voltage lower than the first voltage, and the display on the liquid crystal display unit 236 is restarted when the detected voltage of the secondary battery 220 rises to a third voltage not lower than the first voltage after having reached the second voltage.
Abstract:
By using a CR oscillating circuit and a PLL oscillating circuit selectively, these two oscillating circuits are used as a high frequency, low power consumption, short waiting time for stable oscillation, and low operating voltage oscillating circuit.
Abstract:
An electronic unit for charging a unit to be charged having an accumulator section which can be repeatedly charged has a charging section for charging the accumulator section according to a charging control signal and a charging control section. The charging control section monitors a battery voltage (or a charging current), and maintains an effective charging period per unit time for a long term when the battery voltage (or the charging current) of an accumulator battery is lower than a limit voltage (or the charging current corresponding to the limit voltage) selected in advance. After the battery voltage (or the charging current) reaches the limit voltage (or the charging current corresponding to the limit voltage), however, the charging control section reduces the effective charging period per unit time.
Abstract:
An apparatus for detecting pulse waves and motion intensity of a living body in motion is disclosed. The apparatus has photosensors of the photo-coupler type for wavelengths of 660 nm and 940 nm, respectively. The sensors are attached to a person under examination, and provide output signals which include a blood pulse signal as well as body motion components superimposed on the blood pulse signal. These signals are subjected to the Fourier transformation in a fast Fourier transformation circuit, and then applied to a comparator which in turn compares amplitudes of major frequency components (components associated with pulse waves and body motion) to one another. According to the comparison result, a decision circuit discriminates the pulse wave from the body motion. A display unit displays the pulse rate corresponding to the fundamental frequency of the detected pulse wave. The display unit also displays the change in motion intensity detected by the decision circuit. Thus, the present invention allows the detection of the change in motion intensity during the exercise of a person under the examination.
Abstract:
A pulse rate counter that can accurately measure pulse rate regardless of whether the user is resting or exercising is disclosed. In the pulse rate counter, a pulse wave component extraction means extracts pulse wave components based on the frequency analysis results of a first calculation means and a second calculation means. During this process, an extraction method switching means determines whether the user is resting or exercising based on the amplitude level of the signal output of a body movement signal conversion means, the level (power) of the frequency spectrum of the output signal of the second calculation means, or the degree of variation in the level. If the user is determined to be resting, the extraction method switching means causes the pulse wave component extraction means to extract the pulse wave components based on the frequency analysis result of the first calculation means.
Abstract:
The invention provides a wrist-worn pulse wave measuring device capable of outputting data measured by the wrist-worn pulse wave measuring device to an external data processing device without using a large device body. In the pulse information processing apparatus, a connector piece of a sensor unit is mounted to a connector of a wrist-worn pulse wave measuring device when measuring the pulse. A data transmission connector piece is mounted to the connector of the pulse wave measuring device when transmitting data with a data processor. Whether the operating mode is the pulse measurement mode or the data transmission mode is determined by a signal discriminator which discriminates the signal input from the connector of the pulse wave measuring device.
Abstract:
An electronic device in which electrical power transfer and data transfer are performed by exchanging physical energy between a station and an electronic watch. In the station, a packet creating circuit creates either a charging packet or a data packet. The station transmits the created packet to the electronic watch using electromagnetic coupling. In the electronic watch, a packet determining circuit determines the format of the transmitted packet. The charging operation of a secondary battery and the writing operation of the transferred data to a memory are switched in accordance with the determination result of the packet determination circuit.
Abstract:
In an electronic device in which a charge path to a secondary battery and a signal path to a reception device are partially shared and a receiving-time current due to the reception is made to be a charging current for the secondary battery, even in a case in which the voltage across the secondary battery is close to a maximum voltage, by bypassing the charging current due to the signal reception, the voltage across the secondary battery is controlled so as not to exceed the maximum voltage.
Abstract:
A first circuit having a first coil electrically charges a second circuit having a second coil through electromagnetic coupling of the two coils. When data signals are to be transferred between the first and second circuits, signal transfer is started only after the second circuit has been charged for a predetermined period of time. The position relationship between the coils is also detected, and a charging/transfer selector changes a duty ratio between charge transfer and data transfer in accordance with the detected result. The charge is transferred in an intermittent manner, and the charging rate is adjusted according to the difference between the voltage of a secondary battery observed during a charging phase and the voltage of the secondary battery observed a certain time after interruption of the charging phase, or vice versa.
Abstract:
A movement rate monitor comprises extraction circuitry for extracting a selected movement frequency component from a power spectrum output of a movement sensor, and a movement rate calculation circuit for calculating movement rate in accordance with the extracted frequency component. A display device may be included to display the calculated movement rate.