Abstract:
The present invention is generally directed to a method and assembly for supporting an actuation apparatus (e.g. a movable electrostatic comb) of a microelectromechanical (MEM) system. A suspension assembly of the present invention generally resists actuation forces inherent to electrostatically controlled MEM systems by utilizing an opposingly-directed non-linear tensile force. This can be accomplished by utilizing a suspension assembly of the invention including a longitudinal center beam and a plurality of first and second lateral beams extending out from lateral sides of the center beam. When the center beam of the suspension assembly is drawn in a first direction due to the actuation force(s), either or both of the plurality of first lateral beams and the plurality of second lateral beams are stretched to exert a non-linear tensile force having a force vector component generally oriented in a second direction generally opposite the first direction.
Abstract:
A microelectromechanical system is disclosed that uses a stiff tether between an actuator assembly and a lever that is interconnected with an appropriate substrate such that a first end of the lever may move relative to the substrate, depending upon the direction of motion of the actuator assembly. Any appropriate load may be interconnected with the lever, including a mirror for any optical application.
Abstract:
Self-shadowed microelectromechanical structures such as self-shadowed bond pads, fuses and compliant members and a method of fabricating self-shadowing microelectromechanical structures that anticipate and accommodate blanket metalization process steps are disclosed. In one embodiment, a self-shadowed bond pad (10) configured for shadowing an exposed end (44A) of a shielded interconnect line (44) connected to the bond pad (10) from undesired metalization during a metalization fabrication process step includes electrically connected overlaying first, second and third bond pad areas (42, 72, 92) patterned from respective first, second and third layers (40, 70, 90) of material deposited on a substrate (20). The exposed end (44A) of the interconnect line (44) abuts an edge of the first bond pad area (42). The third bond pad area (92) includes at least one tab portion (94) extending laterally from an edge of the third bond pad area (92) to shadow an area on the substrate (20) including the exposed end (44A) of the interconnect line (44) abutting the edge of the first bond pad area (42).
Abstract:
The present invention comprises a microelectromechanical positioner to achieve substantially translational positioning of a platform without rotational motion, thereby maintaining a constant angular orientation of the platform during movement. A linkage mechanism of the positioner can comprise parallelogram linkages to constrain the rotational motion of the platform. Such linkages further can comprise flexural hinges or other turning joints at the linkage pivots to eliminate the need for rubbing surfaces. A plurality of the linkage mechanisms can be used to enable translational motion of the platform with two degrees of freedom. A variety of means can be used to actuate the positioner. Independent actuation of the anchor links of the linkage mechanisms with rotary electrostatic actuators can be used to provide controlled translational movement of the platform.
Abstract:
A low voltage method and system for controlling electrically activated microelectromechanical (MEM) actuators such as electrostatic comb actuators in reflective microstructure positioning systems are provided. In one embodiment, a low voltage control system (110) includes a single fixed DC voltage source (14) and a plurality of variable DC voltage sources (16). The fixed DC voltage source (14) is electrically connected to commonly connected first terminals (12a) of a plurality of MEM actuators (12) between the MEM actuators (12) and a reference potential (18). Each variable DC voltage source (16) is associated with a separate MEM actuator (12) and is electrically connected between the reference potential (18) and a second terminal (12b) of its associated MEM actuator (12). The fixed DC voltage source supplies a fixed DC voltage that is common to the MEM actuators (12). Each variable DC source (16) supplies a controllable DC voltage to its associated MEM actuator (12). The fixed and controllable voltages are selected to permit control of the variable DC voltage sources (16) using inexpensive control electronics.
Abstract:
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
Abstract:
A cutting blade (56) having a cutting edge (80) defined by an intersection of a first cutting edge surface (72) and a second cutting edge surface (66) is disclosed. The angle between the first cutting edge surface (72) and the second cutting edge surface (66) defines a blade angle (θ). The blade (56) may be fabricated from a wafer (130) by an anisotropic etch. An upper surface (134) of the wafer (130) is defined by a first set of 3 Miller indices, where at least one individual Miller index of this first set has an absolute value greater than 3. A top surface (60) of the blade (56) is defined by part of the upper surface (134) of the wafer (130). The anisotropic etch proceeds until reaching a particular crystallographic plane to define the first cutting edge surface (72). Having the top surface (60) of the blade (56) defined by the noted set of 3 Miller indices increases the potential that a blade angle (θ) of a desired magnitude may be realized.
Abstract:
Multiple cutting blades (56) are fabricated from a wafer (130). This wafer (130) is disposed on a blade handle mounting fixture (224) such that a blade handle (24) maybe mounted on each of the individual blades (56). A cutting edge (80) of each blade (56) is maintained in spaced relation to the fixture (224) as these blade handles (24) are being mounted. Thereafter, the wafer (130) is transferred to a blade separation fixture (300). Each blade 56 is suspended above the fixture (300). An appropriate force is transmitted to the individual blades (56) to separate the same from the wafer (130). Separation preferably occurs before the blade (56) contacts the fixture (300). Thereafter, the blade (56) in effect pivots into an inclined position where its cutting edge (80) projects at least generally upwardly. Preferably, at no time does the cutting edge (80) of any blade (56) contact either the blade handle mounting fixture (224) or the blade separation fixture (300).
Abstract:
A particle filter for microelectromechanical systems is provided that includes a particle trap formed on a substrate material. The particle trap includes an array of multidimensional geometric structures in an adjacent relationship. The geometric structures further define a plurality of multidimensional voids therebetween for trapping particles therein. The individual multidimensional geometric structures are formed by a plurality of vertically interconnected geometric shapes to define different configurations of voids between the adjacent geometric structures. In one embodiment of the filter system, an electrical bias is applied to the array of multidimensional geometric structures to facilitate attracting and trapping of particles in the filter.
Abstract:
The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts. Upon pivoting, the A-frame structures (40) act as lever arms to both lift the platform (14) and tilt the platform (14) with respect to the substrate (12) with at least one degree of freedom. Since the platform (14) lifts up from the surface of the substrate (12), it may be tilted at large angles with respect to the substrate (12).