Abstract:
A method of manufacturing an outer joint member of a constant velocity universal joint includes forming cup and shaft members of medium carbon steel, the cup member being manufactured by preparing a cup member having cylindrical and bottom portions being integrally formed, and a fitting hole formed in a thick portion of the bottom portion, the shaft member being manufactured by preparing a shaft member having a fitting outer surface formed at an end portion of the shaft member to be joined to the bottom portion of the cup member, and fitting the fitting hole of the cup member to the fitting outer surface of the shaft member. The method also includes welding the cup and shaft members from an inner side of the cup member to a fitted portion between the cup and shaft members.
Abstract:
A manufacturing method for an outer joint member of a constant velocity universal joint includes forming a cup member and a shaft member, forming a joining hole in a thickness of a bottom portion to prepare the cup member as a finished component, and forming a joining outer surface on an end portion of the shaft member to be joined onto the bottom portion of the cup member to prepare the shaft member as a finished component. The method also includes fitting the joining hole of the cup member and the joining outer surface of the shaft member as the finished components to each other, and welding a fitting portion between the joining hole and the joining outer surface through irradiation of a beam from an inner side of the cup member, a diameter of the fitting portion being an equal dimension for each joint size.
Abstract:
A display device where concentration of a stress in a display panel is suppressed, to allow improvement in display quality, reliability and the like. A display device includes a display panel, an adhesive layer and a supporting substrate. The adhesive layer is provided on the display panel. The supporting substrate is made up of a member previously provided with curved surfaces. The display panel is bonded onto the curved surface of the supporting substrate by the adhesive layer. The supporting substrate supports the display panel in a curved form along the curved surface.
Abstract:
An exemplary aspect of the present invention is a thin film transistor including: a gate electrode formed on a substrate; a gate insulating film that includes a nitride film and covers the gate electrode; and a semiconductor layer that is disposed to be opposed to the gate electrode with the gate insulating film interposed therebetween, and has a microcrystalline semiconductor layer formed in at least an interface in contact with the nitride film, in which the microcrystalline semiconductor layer contains oxygen at a concentration higher than that of contained nitrogen in at least the vicinity of the interface with the nitride film, the nitrogen being diffused from the nitride film.
Abstract:
A display device includes a metal conductive layer formed on a substrate, a transparent electrode film formed on the substrate and joined to the metal conductive layer and an interlayer insulating film isolating the metal conductive layer and the transparent conductive film. The metal conductive layer has a lower aluminum layer made of aluminum or aluminum alloy, an intermediate impurity containing layer made of aluminum or aluminum alloy containing impurities and formed on a substantially entire upper surface of the lower aluminum layer and an upper aluminum layer made of aluminum or aluminum alloy and formed on the intermediate impurity containing layer. In the interlayer insulating film and the upper aluminum layer, a contact hole penetrates therethrough and locally exposes the intermediate impurity containing layer, and the transparent electrode film is joined to the metal conductive layer in the intermediate impurity containing layer exposed from the contact hole.
Abstract:
A touch panel capable of calculating touch position coordinates of an indicator with high accuracy in a desired detection time even if a large number of detection wire groups are provided. An oscillator circuit selects one of detection wires and selected by a circuit or the like according to a command from a detection control circuit and oscillates. A circuit counts an output signal from the oscillator circuit up to a first count value. A circuit measures a period of the count. A circuit determines that there is a touch when it detects the detection wire of which the measured period is equal to or higher than a threshold value and sends the detection wire giving a maximum value equal to or higher than the threshold value to a circuit as a touch detection wire. The circuit causes the circuit or the like to select the touch detection wire and the detection wires adjacent thereto on both sides, the circuit counts up until the count value becomes a second count value larger than the first count value, and the circuit measures the count period. The circuit performs interpolation on the basis of the count value obtained by subtracting a background capacitance value from a measured value obtained by the circuit, to thereby determine the touch coordinates.
Abstract:
A double-row self-aligning roller bearing includes left and right rows of rollers, arranged between an inner race and an outer race. A raceway surface of the outer race represents a spherical shape and the rollers have an outer peripheral surface following the shape of the raceway surface of the outer race. The rollers of the left and right roller rows have respective lengths different from each other. Also, the left and right roller rows have respective contact angles different from each other.
Abstract:
In a liquid crystal display (10) having a curved display surface, long sides of pixel structures (11) are arranged along the curve direction (Y) of the display surface and on a side of counter substrate provided is a black matrix having a black matrix opening (41a) whose length in the curve direction (Y) is not longer than E−L {(T1/2)+(T2/2)+d}/R, assuming that the length of the display surface in the curve direction (Y) is L, the thickness of an array substrate is T1, the thickness of the counter substrate is T2, the size of the gap between the array substrate and the counter substrate is d, the radius of curvature of the curved display surface is R and the length of a long side of a pixel electrode (29) provided in each of the pixel structures (11) is E. It thereby becomes possible to suppress display unevenness resulting from positional misalignment of the two substrates due to curvature and provide a liquid crystal display achieving a high-quality display image.
Abstract:
A liquid crystal display according to the present invention includes: a liquid crystal cell 10, in which pixels having independently driven reflecting and transmitting members are arranged in a matrix, that is composed of a first substrate 15, a second substrate 17 having pixel driving members, and a liquid crystal 16 sandwiched between the first substrate 15 and the second substrate 17; a first polarizing means 13 disposed facing the first substrate 15; a second polarizing means 19 disposed facing the second substrate 17; a first front light 6 disposed outside the first polarizing means 13; and a second front light 7 disposed outside the second polarizing means 19. Owing to the configuration of the display, images can be displayed on both sides of the liquid crystal display.