摘要:
A method is provided for fabricating a microelectronic device and a resistor on a substrate. The method can include forming device regions in a monocrystalline semiconductor region of a substrate, in which the device regions have edges defined according to a first semiconductor feature overlying a major surface of the semiconductor region. A dielectric region is formed having a planarized surface overlying the semiconductor region and overlying a second semiconductor feature disposed above a surface of an isolation region in the substrate. The surface of the isolation region can be disposed below the major surface. The method can further include removing at least a portion of the first semiconductor feature exposed at the planarized surface of the dielectric region to form an opening and forming a gate at least partially within the opening. Thereafter, further processing can include forming electrically conductive contacts extending through apertures in the dielectric region to the second semiconductor feature and the device regions, respectively. The step of forming electrically conductive contacts may include forming silicide regions contacting portions of the second semiconductor feature and the device regions, respectively. In such way, the method can define a resistor having a current path through the second semiconductor feature, and a microelectronic device including the gate and the device regions.
摘要:
Thin semiconductor regions and thick semiconductor regions are formed oven an insulator layer. Thick semiconductor regions include at least one semiconductor fin. A gate conductor layer is patterned to form disposable planar gate electrodes over ETSOI regions and disposable side gate electrodes on sidewalls of semiconductor fins. End portions of the semiconductor fins are vertically recessed to provide thinned fin portions adjacent to an unthinned fin center portion. After appropriate masking by dielectric layers, selective epitaxy is performed on planar source and drain regions of ETSOI field effect transistors (FETs) to form raised source and drain regions. Further, fin source and drain regions are grown on the thinned fin portions. Source and drain regions, fins, and the disposable gate electrodes are planarized. The disposable gate electrodes are replaced with metal gate electrodes. FinFETs and ETSOI FETs are provided on the same semiconductor substrate.
摘要:
A method includes providing a substrate having insulating layers thereon; forming a first trench in a first region of the substrate and a second trench in a second region of the substrate; thermally growing layers of oxide along the sides of the trenches; filling the first trench and the second trench with a polysilicon material, planarizing the polysilicon material, and creating a shallow trench isolation between the first region and the second region, wherein the step f) of creating the shallow trench isolation is performed only after the steps of d) filling and e) planarizing.
摘要:
A semiconductor structure including a body-contacted finFET device and methods form manufacturing the same. The method may include forming one or more semiconductor fins on a SOI substrate, forming a semiconductive body contact region connected to the bottom of the fin(s) in the buried insulator region, forming a sacrificial gate structure over the body region of the fin(s), forming a source region on one end of the fin(s), forming a drain region on the opposite end of the fin(s), replacing the sacrificial gate structure with a metal gate, and forming electrical contacts to the source, drain, metal gate, and body contact region. The method may further include forming a body contact fin contemporaneously with the finFET fins that is in contact with the body contact region, through which electrical contact to the body contact region is made.
摘要:
Transistors exhibiting different electrical characteristics such as different switching threshold voltage or different leakage characteristics are formed on the same chip or wafer by selectively removing a film or layer which can serve as an out-diffusion sink for an impurity region such as a halo implant and out-diffusing an impurity such as boron into the out-diffusion sink, leaving the impurity region substantially intact where the out-diffusion sink has been removed. In forming CMOS integrated circuits, such a process allows substantially optimal design for both low-leakage and low threshold transistors and allows a mask and additional associated processes to be eliminated, particularly where a tensile film is employed to increase electron mobility since the tensile film can be removed from selected NMOS transistors concurrently with removal of the tensile film from PMOS transistors.
摘要:
Field Effect Transistors (FETs), Integrated Circuit (IC) chips including the FETs, and a method of forming the FETs on ICs. FET locations are defined on a layered semiconductor wafer, preferably a Silicon On Insulator (SOI) wafer. One or more FET locations are defined as silicon gate locations and remaining as Replacement Metal Gate (RMG) FET locations with at least one of each on the IC. Polysilicon gates are formed in all FET locations. Gates in silicon gate locations are tailored, e.g., doped and silicided. Remaining polysilicon gates are replaced with metal in RMG FET locations. FETs are connected together into circuits with RMG FETs being connected to silicon gate FETs.
摘要:
Thin semiconductor regions and thick semiconductor regions are formed oven an insulator layer. Thick semiconductor regions include at least one semiconductor fin. A gate conductor layer is patterned to form disposable planar gate electrodes over ETSOI regions and disposable side gate electrodes on sidewalls of semiconductor fins. End portions of the semiconductor fins are vertically recessed to provide thinned fin portions adjacent to an unthinned fin center portion. After appropriate masking by dielectric layers, selective epitaxy is performed on planar source and drain regions of ETSOI field effect transistors (FETs) to form raised source and drain regions. Further, fin source and drain regions are grown on the thinned fin portions. Source and drain regions, fins, and the disposable gate electrodes are planarized. The disposable gate electrodes are replaced with metal gate electrodes. FinFETs and ETSOI FETs are provided on the same semiconductor substrate.
摘要:
Field Effect Transistors (FETs), Integrated Circuit (IC) chips including the FETs, and a method of forming the FETs on ICs. FET locations are defined on a layered semiconductor wafer, preferably a Silicon On Insulator (SOI) wafer. One or more FET locations are defined as silicon gate locations and remaining as Replacement Metal Gate (RMG) FET locations with at least one of each on the IC. Polysilicon gates are formed in all FET locations. Gates in silicon gate locations are tailored, e.g., doped and silicided. Remaining polysilicon gates are replaced with metal in RMG FET locations. FETs are connected together into circuits with RMG FETs being connected to silicon gate FETs.
摘要:
A method includes providing a substrate having insulating layers thereon; forming a first trench in a first region of the substrate and a second trench in a second region of the substrate; thermally growing layers of oxide along the sides of the trenches; filling the first trench and the second trench with a polysilicon material, planarizing the polysilicon material, and creating a shallow trench isolation between the first region and the second region, wherein the step f) of creating the shallow trench isolation is performed only after the steps of d) filling and e) planarizing.
摘要:
A method is provided for fabricating a microelectronic device and a resistor on a substrate. The method can include forming device regions in a monocrystalline semiconductor region of a substrate, in which the device regions have edges defined according to a first semiconductor feature overlying a major surface of the semiconductor region. A dielectric region is formed having a planarized surface overlying the semiconductor region and overlying a second semiconductor feature disposed above a surface of an isolation region in the substrate. The surface of the isolation region can be disposed below the major surface. The method can further include removing at least a portion of the first semiconductor feature exposed at the planarized surface of the dielectric region to form an opening and forming a gate at least partially within the opening. Thereafter, further processing can include forming electrically conductive contacts extending through apertures in the dielectric region to the second semiconductor feature and the device regions, respectively. The step of forming electrically conductive contacts may include forming silicide regions contacting portions of the second semiconductor feature and the device regions, respectively. In such way, the method can define a resistor having a current path through the second semiconductor feature, and a microelectronic device including the gate and the device regions.