Abstract:
A method for effectively implementing a multi-room television system includes a digital base station that processes and combines various program sources to produce a processed stream. A communications processor then responsively transmits the processed stream as a local composite output stream to various wired and wireless display devices for flexible viewing at variable remote locations. The transmission path performance is used to determine the video encoding process, and special attention is taken to assure that all users have low-latency interactive capabilities.
Abstract:
A method for signaling the type of access sought by a microprocessor to external memory. A microprocessor can read from or write into external memory. When the microprocessor initiates a read or write cycle, access signals indicating: the read or write cycle, the lower order address bits of the sought after code or data, whether code or data is sought, and bit-width of the sought after code or data, are provided to the inventions byte enable chaser circuit. If a read cycle has been initiated the byte enable chaser circuit encodes the signals into predetermined bit patterns and outputs the bit patterns on the microprocessor's byte enable signal pins. The bit-patterns are available for each bus cycle and specify whether code or data is sought, the length of the sought string, and the lower order address bits of the strings address. If a write cycle is initiated the byte enable signed pins indicate which byte(s) of the data bus are to be written into memory.
Abstract:
An apparatus and method for effectively implementing a wireless television system may include a communications processor and a transmitter device that combine at least one of a local-area network interface, a wide-area network interface, and one or more television data interfaces for effectively performing a wireless network transmission process. A transmitted stream from the wireless television system may be received via wireless network processing for viewing local-area network data, wide-area network data (such as Internet data), or television data by flexibly utilizing various electronic devices such as a notepad personal computer, a personal digital assistant (PDA), or a handheld TV remote control device.
Abstract:
An apparatus and method for effectively implementing a wireless television system may include a communications processor and a transmitter device that combine at least one of a local-area network interface, a wide-area network interface, and one or more television data interfaces for effectively performing a wireless network transmission process. A transmitted stream from the wireless television system may be received via wireless network processing for viewing local-area network data, wide-area network data (such as Internet data), or television data by flexibly utilizing various electronic devices such as a notepad personal computer, a personal digital assistant (PDA), or a handheld TV remote control device.
Abstract:
An apparatus and method for effectively implementing a wireless television system may include a communications processor and a transmitter device that combine at least one of a local-area network interface, a wide-area network interface, and one or more television data interfaces for effectively performing a wireless network transmission process. A transmitted stream from the wireless television system may be received via wireless network processing for viewing local-area network data, wide-area network data (such as Internet data), or television data by flexibly utilizing various electronic devices such as a notepad personal computer, a personal digital assistant (PDA), or a handheld TV remote control device.
Abstract:
A system and method for effectively performing an adaptive quantization procedure includes an energy calculator that initially determines energy values for subbands of input data. A quantizer receives initial quantization parameters that each correspond to a different respective one of the subbands. The quantizer calculates adaptive quantization parameters from the initial quantization parameters by utilizing corresponding ones of the energy values. The quantizer then utilizes the adaptive quantization parameters to generate quantized coefficients for the subbands during the adaptive quantization procedure.
Abstract:
A system and method for effectively encoding and decoding electronic information includes an encoding system with a tiling module that initially divides source image data into data tiles. A frame differencing module then outputs only altered data tiles to various processing modules that convert the altered data tiles into corresponding tile components. A quantizer performs a compression procedure upon the tile components to generate compressed data according to an adjustable quantization parameter. An adaptive entropy selector then selects one of a plurality of available entropy encoders to most effectively perform an entropy encoding procedure to thereby produce encoded data. The entropy encoder may also utilize a feedback loop to adjust the quantization parameter in light of current transmission bandwidth characteristics.
Abstract:
The present invention relates generally to an optimized memory architecture for computer systems and, more particularly, to integrated circuits that implement a memory subsystem that is comprised of internal memory and control for external memory. The invention includes one or more shared high-bandwidth memory subsystems, each coupled over a plurality of buses to a display subsystem, a central processing unit (CPU) subsystem, input/output (I/O) buses and other controllers. Additional buffers and multiplexers are used for the subsystems to further optimize system performance.
Abstract:
An image processing apparatus for use in a display system comprises a display device for viewing image, and a geometric transformation module that is configured to precondition said image data with geometric transformations to thereby compensate for characteristics of the display system. The geometric transformation module may include a spatial transformation module for redefining spatial relationships between image pixels, an alignment and rotation correction module for repositioning image pixels, a focus correction module for correcting image defocus, a distortion correction module for correcting image distortions, and a multi-frame correlation module for performing motion-compensated frame rate conversion.
Abstract:
The present invention relates generally to an optimized memory architecture for computer systems and, more particularly, to integrated circuits that implement a memory subsystem that is comprised of internal memory and control for external memory. The invention includes one or more shared high-bandwidth memory subsystems, each coupled over a plurality of buses to a display subsystem, a central processing unit (CPU) subsystem, input/output (I/O) buses and other controllers. Additional buffers and multiplexers are used for the subsystems to further optimize system performance.