Abstract:
A chest drainage system includes a collection device and a fluid pathway configured to extend from the collection device to a patient. The fluid pathway has a proximal portion configured to extend proximally toward the patient and a distal portion configured to extend distally from the patient. The chest drainage system also includes a pressure source including an accumulator configured to selectively provide sub-atmospheric pressure to the distal portion of the fluid pathway and a valve configured to selectively relieve pressure in the proximal portion of the fluid pathway. The system is configured to open the valve and to introduce the sub-atmospheric pressure from the accumulator of the pressure source when a predetermined pressure differential is detected between the proximal and distal portions of the fluid pathway.
Abstract:
A chest drainage system includes a collection device and a fluid pathway configured to extend from the collection device to a patient. The fluid pathway has a proximal portion configured to extend proximally toward the patient and a distal portion configured to extend distally from the patient. The chest drainage system also includes a pressure source including an accumulator configured to selectively provide sub-atmospheric pressure to the distal portion of the fluid pathway and a valve configured to selectively relieve pressure in the proximal portion of the fluid pathway. The system is configured to open the valve and to introduce the sub-atmospheric pressure from the accumulator of the pressure source when a predetermined pressure differential is detected between the proximal and distal portions of the fluid pathway.
Abstract:
The present invention relates to fluid recovery systems for collecting fluid from a patient. A fluid recovery system according to the teachings of the invention includes a housing having a collection chamber for collecting fluid from a patient, and further includes a plurality of components and/or structures that are integrally formed with the housing. Such integrally molded components can include valves for controlling fluid flow within the fluid recovery system and a tamper resistant disposal system.
Abstract:
A liquid dispensing mechanism is described for moving a dispensing tip from an aspirating station to a dispensing station, preferably through a circle of rotation. To move the tip first vertically, then rotationally, and then vertically, the mechanism mounts the tip and a pump on a carrier that frictionally engages a cam over which the carrier is mounted. The pump is slidably mounted for reciprocation on the carrier, and has a cam follower that extends through a slot in the carrier to the cam inside. Apparatus is provided for limiting the rotation of the carier between two circumferential positions to force the cam follower, and hence the pump and tip, to move relative to the still-rotating cam.
Abstract:
An apparatus is provided for indicating the presence of pressure within a collection chamber of a device such as a chest drainage device. The apparatus includes a bladder configured to be positioned within the collection chamber or within another chamber in fluid flow communication with the collection chamber. The bladder has a concavity formed therein and configured to contract or expand in response to pressure in the collection chamber. The apparatus also includes surfaces associated with the bladder that are configured to move with respect to one another upon contraction or expansion of the concavity of the bladder, thereby indicating pressure within the collection chamber.
Abstract:
A blood collection vessel includes a blood inlet, a pooling region in which blood from the inlet collects, and an outlet in the pooling region for reinfusion of the collected blood. A filter located in the blood path between inlet and outlet extends at least in part into the pooling region and impounds clots so they remain away from the outlet but suspended in the collected blood. Preferably, the filter is located to provide venting between both sides of the filter. In one embodiment the filter is a vertical wall, which defines a shielded outlet column or chimney extending above the outlet. Blood permeates to the outlet region over a broad area, and the column forms an open suction path that prevents suction differentials from arising across the filter, so clots cannot be sucked through the large-pore material. With the clots residing in the collected fluid, the total fluid loss is directly displayed in a single window at all times, and maximal use is made of the limited volume in the vessel. In another embodiment, the filter constitutes a false floor or basket in the pooling region. A preferred construction employs filter material on a support grid, to form a flexible and self-supporting filter sheet, which inserts like a plate to compartmentalize the collection vessel and form an impounding surface in the pooling region.
Abstract:
An apparatus is provided for introducing a catheter through a body opening along an insertion axis. The apparatus includes an arm having an end portion configured to extend into the body opening along the insertion axis, wherein the arm is configured to extend adjacent an external catheter surface. The apparatus also includes a surface extending from the end portion of the arm at an angle to the insertion axis, wherein the surface is configured to extend at least partially within an aperture formed in the catheter.
Abstract:
An apparatus is provided for indicating the presence of pressure within a collection chamber of a device such as a chest drainage device. The apparatus includes a bladder configured to be positioned within the collection chamber or within another chamber in fluid flow communication with the collection chamber. The bladder has a concavity formed therein and configured to contract or expand in response to pressure in the collection chamber. The apparatus also includes surfaces associated with the bladder that are configured to move with respect to one another upon contraction or expansion of the concavity of the bladder, thereby indicating pressure within the collection chamber.