摘要:
A blood collection vessel includes a blood inlet, a pooling region in which blood from the inlet collects, and an outlet in the pooling region for reinfusion of the collected blood. A filter located in the blood path between inlet and outlet extends at least in part into the pooling region and impounds clots so they remain away from the outlet but suspended in the collected blood. Preferably, the filter is located to provide venting between both sides of the filter. In one embodiment the filter is a vertical wall, which defines a shielded outlet column or chimney extending above the outlet. Blood permeates to the outlet region over a broad area, and the column forms an open suction path that prevents suction differentials from arising across the filter, so clots cannot be sucked through the large-pore material. With the clots residing in the collected fluid, the total fluid loss is directly displayed in a single window at all times, and maximal use is made of the limited volume in the vessel. In another embodiment, the filter constitutes a false floor or basket in the pooling region. A preferred construction employs filter material on a support grid, to form a flexible and self-supporting filter sheet, which inserts like a plate to compartmentalize the collection vessel and form an impounding surface in the pooling region.
摘要:
A fluid recovery system, such as a chest or thoracic cavity drain, having a collection chamber for collecting fluid from a patient includes a base and a front face having a translucent portion for viewing the collected fluid and monitoring operation of the system. The front face is coupled to the base at an acute angle to facilitate viewing of the collected fluid, and measurement of the fluid volume, from a position substantially above the fluid recovery system. Additionally, a column insert can be positioned within the collection chamber to collect an initial volume of the fluid and to allow precise determination of its volume.
摘要:
The present invention relates to fluid recovery systems for collecting fluid from a patient. A fluid recovery system according to the teachings of the invention includes a housing having a collection chamber for collecting fluid from a patient, and further includes a plurality of components and/or structures that are integrally formed with the housing. Such integrally molded components can include valves for controlling fluid flow within the fluid recovery system and a tamper resistant disposal system.
摘要:
A method of UV curing and corresponding resulting non-polymeric cross-linked gel are provided. The cross-linked gel can be combined with a medical device structure. The cross-linked gel can provide anti-adhesion characteristics, in addition to improved healing and anti-inflammatory response. The cross-linked gel is generally formed of a naturally occurring oil, or an oil composition formed in part of a naturally occurring oil, that is at least partially cured forming a cross-linked gel derived from at least one fatty acid compound. In addition, the oil composition can include a therapeutic agent component, such as a drug or other bioactive agent. The curing method can vary the application of UV light in both intensity and duration to achieve a desired amount of cross-linking forming the gel.
摘要:
A stand-alone film is derived at least in part from fatty acids. The stand-alone film can have anti-adhesive, anti-inflammatory, non-inflammatory, and wound healing properties, and can additionally include one or more therapeutic agents incorporated therein. Corresponding methods of making the stand-alone film include molding, casting, or otherwise applying a liquid or gel to a substrate, and curing or otherwise treating to form the stand-alone film. The resulting stand-alone film is bioabsorbable.
摘要:
A coated medical device and a method of providing a coating on an implantable medical device result in a medical device having a bio-absorbable coating. The coating includes a bio-absorbable carrier component. In addition to the bio-absorbable carrier component, a therapeutic agent component can also be provided. The coated medical device is implantable in a patient to effect controlled delivery of the coating, including the therapeutic agent, to the patient.
摘要:
A coated medical device an a method of providing a coating on an implantable medical device result in a medical device having a bio-absorbable coating. The coating includes a bio-absorbable carrier component. In addition to the bio-absorbable carrier component, a therapeutic agent component can also be provided. The coated medical device is implantable in a patient to effect controlled delivery of the coating, including the therapeutic agent, to the patient.
摘要:
A radially expandable fluid delivery device for delivering a fluid to a treatment site within the body is disclosed. The fluid delivery device is constructed of a microporous, biocompatible fluoropolymer material having a microstructure that can provide a controlled, uniform, low-velocity fluid distribution through the walls of the fluid delivery device to effectively deliver fluid to the treatment site without damaging tissue proximate the walls of the device. The fluid delivery device includes a tubular member defined by a wall having a thickness transverse to the longitudinal axis of the tubular member and extending between an inner and an outer surface. The wall is characterized by a microstructure of nodes interconnected by fibrils. The tubular member is deployable from a first, reduced diameter configuration to a second, increased diameter configuration upon the introduction of a pressurized fluid to the lumen. The tubular member includes at least one microporous portion having a porosity sufficient for the pressurized fluid to permeate through the wall. Substantially all of the nodes within the microporous portion are oriented such that spaces between the nodes form micro-channels extending from the inner surface-to the outer surface of the wall.
摘要:
A method and apparatus relating to a biocompatible soft tissue implant is disclosed. The implant, in the form of a prosthesis, is constructed of a knitted pile mesh material arranged into either a 3-dimensional structure or a planar shape or structure. The material or fabric includes a plurality of filament extensions projecting outwardly therefrom. The filament extensions can be radially projecting looping filaments from one or more rows of the knitted pile mesh material. The combination of the filament extensions with the 3-dimensional structure results in the biocompatible implant having a structural resistance to hinder anticipated crushing forces applied to the implant, and also provide a suitable 3-dimensional structure for promoting rapid tissue in-growth to anchor such implant without migration and strengthen the repaired tissue area.