Abstract:
A laminated structure formed by placing a cover substrate over a device substrate with a projection structure in between in the vacuum atmosphere. Next, the laminated structure is taken out into the air in a state that a space between the device substrate and the cover substrate is maintained in the vacuum atmosphere. Subsequently, the portion of the organic layer formed on the conductive electrode is removed by irradiating laser light to the laminated structure. Since the space between the device substrate and the cover substrate is maintained in the vacuum atmosphere, even if the laser light is emitted to the laminated structure taken out into the air, the laser light is emitted to the portion of the organic layer formed on the conductive electrode in the vacuum atmosphere.
Abstract:
A display device and a method for manufacturing the display device are provided. The display device includes an organic layer on an auxiliary wiring is removed with high precision by one operation and, thereby, the yield and the productivity are improved. A lower electrode is formed by patterning in each pixel on a substrate. An auxiliary wiring including a light absorption layer is formed between individual pixels. An organic layer is formed on the substrate while covering the lower electrodes. Laser irradiation is conducted from the organic layer side, the laser light is converted to heat in the light absorption layer exposed at a portion under the organic layer, and the organic layer portion above the light absorption layer is removed selectively. An upper electrode is formed on the organic layer and is connected to the light absorption layer portion of the auxiliary wiring.
Abstract:
There is provided an electronic part that has a substrate, an insulating layer formed on the substrate and a pad formed on the insulating layer and is electrically connected with an external terminal and that further includes a cavity formed at least at either one of the substrate corresponding to a bottom surface of the electrode pad and a region of the insulating layer. It provides a highly reliable electronic part, its fabrication method as well as an acceleration sensor using the electronic part and its fabrication method.
Abstract:
A display device and a method for manufacturing the display device are provided. The display device includes an organic layer on an auxiliary wiring is removed with high precision by one operation and, thereby, the yield and the productivity are improved. A lower electrode is formed by patterning in each pixel on a substrate. An auxiliary wiring including a light absorption layer is formed between individual pixels. An organic layer is formed on the substrate while covering the lower electrodes. Laser irradiation is conducted from the organic layer side, the laser light is converted to heat in the light absorption layer exposed at a portion under the organic layer, and the organic layer portion above the light absorption layer is removed selectively. An upper electrode is formed on the organic layer and is connected to the light absorption layer portion of the auxiliary wiring.
Abstract:
The present invention is equipped with a USB interface 7 for being connected to a portable music player that is an external device, a browser button 27, a rotary encoder button 26, a back button 28, CPU 31 for acquiring a content list CL from the portable music player, RAM 33 for storing the content list CL acquired by the CPU 31, and a LED processing section 42 for changing how the rotary encoder button 26 illuminates to encourage the next operation at a time when the browse button 27 is operated. Accordingly, when searching pieces of music content stored in the portable music player that is an external device, one can unknowingly understand how to operate, thereby providing good operability even for searching pieces of music content of the external portable music player.
Abstract:
A method that forms individual semiconductor devices from a semiconductor substrate including a first face having a first region in which micro-mechanical elements are formed and a second region which surrounds the first region and in which a scribe line is formed, and a second face having a third region which is opposed to the first face and corresponds to the first region in which the micro-mechanical elements are formed and a fourth region which surrounds the third region and corresponds to the second region. The method includes thinning the fourth region of the second face which corresponds to the scribe line formed in the second region of the first face, and cutting the semiconductor substrate along the scribe line formed in the second region of the first face.
Abstract:
A steel sheet has composition consisting of 0.003-0.10 wt. % C, not more than 1.0 wt. % Si, 0.05-1.5 wt. % Mn, not more than 0.10 wt. % P, not more than 0.02 wt. % S, 1.5-8.0 wt. % Cr, 0.003-0.10 wt. % Al, at least one of 0.08-0.40 wt. % Ti, 0.08-0.40 wt. % Nb and 0.08-0.40 wt. % V, optionally at least one of Cu up to 2.0 wt. %, Ni up to 2.0 wt. %, 0.01-2.0 wt. % Mo, 0.01-2.0 wt. % W and 0.0003-0.0050 wt. % B and the balance being essentially Fe except inevitable impurities. The steel sheet is good of both a room-temperature strength and a high temperature strength. The new steel sheet is useful as a frame member of a color picture tube for stretching color selecting electrode elements, instead of an expensive ferritic stainless steel.
Abstract:
A light-emitting display capable of maintaining low power consumption and improving display quality irrespective of the configuration of an auxiliary wiring. A second electrode and an auxiliary wiring are electrically connected to each other through a conductive contact section. Moreover, only a part of the auxiliary wiring is connected to the contact section. Even if the surface of the auxiliary wiring is oxidized, an increase in connection resistance is prevented. Moreover, a restriction on layout is not imposed at the time of forming the contact section.
Abstract:
An inclination position sensor where, on a substrate on which wires are formed, plural electrodes electrically connected to the wires are disposed, a conductive ball that can simultaneously contact at least two of the plural electrodes is disposed, an enclosure that covers the plural electrodes and the conductive ball is disposed, and a circular arc is formed in places of the electrodes that contact the conductive ball.
Abstract:
A display device includes: a pixel including a plurality of light emitting elements each formed by sequentially stacking a first electrode layer, an organic layer, and a second electrode layer, spaced apart from each other in a first direction orthogonal to the stacking direction thereof, and emitting light emission colors different from each other; and an auxiliary wiring layer electrically connected to the second electrode layer. A plurality of the pixels are aligned in the first direction so as to include a gap which is larger than a gap between the light emitting elements adjacent to each other, and the auxiliary wiring layer is provided between the pixels adjacent to each other.