Abstract:
The invention is a sensor for the presence of bio-specific (e.g., immunological) molecules. It is aimed to giving an alternative, highly advanced method for performing different tests for the presence of immuno-specific molecules in liquid environments such as body liquids, biological cultures, environmental samples, etc. Gold patterns are photolithoghraphyically fabricated onto glass substrates to form addressable electrodes of micron size. The sensor is assembled when colloidal particles from suspension are deposited dielectrophoretically in the microscopic gaps between the electrodes. The surfaces of these particles carry immuno-active binding sites that collect the target molecules. The sensor readout is accomplished by secondary tagging of the target molecules with colloidal gold and its enhancement by silver nucleation, which leads to short-circuiting of the electrodes. The device allows extreme miniaturization and direct electric readout. We anticipate detection levels as low as 10−21M, which is a 200 times gain in sensitivity over the conventional techniques.
Abstract:
Nanofibers are fabricated in a continuous process by introducing a polymer solution into a dispersion medium, which flows through a conduit and shears the dispersion medium. Liquid strands, streaks or droplets of the polymer solution are continuously shear-spun into elongated fibers. An inorganic precursor may be introduced with the polymer solution, resulting in fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
Abstract:
Nanofibers are fabricated by introducing a mixture of a polymer solution and inorganic precursor into a dispersion medium and shearing the mixture. Liquid strands, streaks or droplets of the mixture are spun into elongated fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
Abstract:
A photocurable material having a microfluidic endoskeleton constructed in a flexible polymeric slab is disclosed. The flexible polymeric slab comprises a first flexible polymeric sheet with microchannel network embedded thereon and a second flexible polymeric sheet sealed to the first flexible polymeric sheet. The microchannel network is filled with a photocurable fluid that may be solidified upon exposure to an activated light to create a rigid endoskeleton within the slab. The flexible polymeric sheet may be polydimethylsiloxane (PDMS). The process allows preserving a user-defined shape by illumination of the material. The disclosed photocured shaped PDMS slab with microfluidic skeleton has enhanced tensile stress-strain properties, elastomeric modulus and bending modulus compared to the PDMS slab without the photocured microfluidic skeleton.
Abstract:
Nanofibers are fabricated by introducing a polymer solution into a dispersion medium and shearing the dispersion medium. Droplets of the polymer solution are spun into elongated fibers that are insoluble in the dispersion medium.
Abstract:
Nanofibers are fabricated in a continuous process by introducing a polymer solution into a dispersion medium, which flows through a conduit and shears the dispersion medium. Liquid strands, streaks or droplets of the polymer solution are continuously shear-spun into elongated fibers. An inorganic precursor may be introduced with the polymer solution, resulting in fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
Abstract:
Nanofibers are fabricated by introducing a mixture of a polymer solution and inorganic precursor into a dispersion medium and shearing the mixture. Liquid strands, streaks or droplets of the mixture are spun into elongated fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
Abstract:
Nanofibers are fabricated by introducing a polymer solution into a dispersion medium and shearing the dispersion medium. Droplets of the polymer solution are spun into elongated fibers that are insoluble in the dispersion medium.