Abstract:
A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly.
Abstract:
A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly.
Abstract:
A hydraulic control and actuation system for downhole tools. In a described embodiment, a hydraulic control and actuation system includes an internal chamber serving as a low pressure region and a well annulus serving as an energy source. A valve assembly provides selective fluid communication between alternating opposite sides of a piston and each of the energy source and low pressure region. Displacement of the piston operates a well tool. Operation of the valve assembly is controlled via telemetry between a remote location and an electronic circuit of the system.
Abstract:
An integrated drilling and evaluation system includes a drill string having an interior portion and a drill bit, carried on a lower end, that includes ports for communicating fluid between the interior portion of the drill string and an uncased well bore. A packer, carried above the drill bit, is operable for sealingly closing a well annulus, A tester valve inserted in the drill string is operable for sealingly closing the drill string. The packer and tester valve are cooperatively operable for isolating a subsurface zone of interest. The system includes monitoring means inserted in the drill string for monitoring a parameter of well fluid from the subsurface zone. Once the subsurface zone is isolated, well fluid is communicated into the interior portion of the drill string through the ports of the drill bit, received by the monitoring means, and tested without removing the drill string form the well.
Abstract:
Electrical power generators and methods of producing power in a subterranean well are provided. In a described embodiment, fluid flow through a fluid conduit causes a member to displace or vibrate. The displacement of the member is utilized to induce strain in a piezoelectric material, thereby causing the piezoelectric material to produce electricity. Various means may be used to create turbulence in the fluid flow, thereby increasing displacement of the member, resulting in increased power output from the generator.
Abstract:
Method and apparatus are presented for perforating a subterranean formation so as to establish fluid communication between the formation and a wellbore, the wellbore having casing cemented therein, the casing having a cement sheath therearound. The casing is perforated with a mechanical perforator and thereafter a propellant material is ignited within the casing thereby perforating the cement sheath. The formation may thereafter be stimulated with an acid stimulator. The mechanical perforator may include use of a toothed wheel, or a needle-punch perforator. The propellant may be deployed in a sleeve and may comprise an abrasive material.
Abstract:
An electrically insulating gap subassembly for inclusion in a pipe string (30) comprising a pair of tubular members (90, 98) having an electrically insulating isolation subassembly (94) threadably disposed therebetween is disclosed. The electrically insulating isolation subassembly (94) has an anodized aluminum surface that provides electrical isolation to interrupt electrical contact between the two tubular members (90, 98) such that electromagnetic waves (46, 54) carrying information may be generated thereacross.
Abstract:
A downhole tool (34) comprising a housing (60), a mandrel (76) slidably disposed within the housing (60), the mandrel (76) having a fluid passageway (52) extending axially therethrough, a valve (50) disposed within the mandrel (76), the valve (50) having first and second positions to selectively permit and prevent fluid flow through the fluid passageway (52) of the mandrel (76) and first and second pistons (98, 104) slidably disposed between the housing (60) and the mandrel (76), the first and second pistons (98, 104) slidably displacable in opposite directions relative to the housing (60) in response to a differential fluid pressure, the first and second pistons (98, 104) selectively engagable with the mandrel (76) to respectively displace the mandrel (76) in first and second directions, thereby operating the valve (50) between said first and second positions.
Abstract:
An automatic downhole pump assembly comprising a housing, a sleeve slidably disposed within the housing, a piston defining an interior volume, the piston slidably disposed within the sleeve and within the housing such that a fluid pressure within the interior volume causes the sleeve to oscillate relative to the housing and causes the piston to oscillate relative to the sleeve and the housing, and a pump which is operably associated with the piston such that fluid is pumped through the pump assembly as the piston oscillates relative to the housing.
Abstract:
A formation testing system provides the ability to reliably and repeatedly perform tests, such as drawdown tests, on closely spaced apart formations intersected by subterranean wellbores without relying on absolute fluid pressure for actuation thereof. In a preferred embodiment, a formation testing system is alternately configured for normal drilling operations or for fluid sampling operations by applying preselected differential pressures to the system. In a representatively illustrated preferred embodiment, a formation testing system has opposing pistons which cooperate with uniquely configured ratchet mechanisms to change the system's configuration in response to changes in differential pressure applied thereto.