Abstract:
The present invention relates to a data storage medium encoded with the corresponding structure coordinates of molecules and molecular complexes which comprise the active site binding pockets of JNK3. A computer comprising such data storage material is capable of displaying such molecules and molecular complexes, or their structural homologues, as a graphical three-dimensional representation on a computer screen. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen and design compounds, including inhibitory compounds, that bind to JNK3 or homologues thereof. This invention also relates to molecules and molecular complexes which comprise the active site binding pockets of JNK3 or close structural homologues of the active site binding pockets.
Abstract:
The invention relates to the X-ray crystal structure of the hepatitis C virus helicase domain. More specifically, the invention relates to crystallized complexes of HCV helicase and an oligonucleotide, to crystallizable compositions of HCV helicase and an oligonucleotide and to methods of crystallizing an HCV helicase-oligonucleotide complex. The invention further relates to a computer programmed with the structure coordinates of the HCV helicase oligonucleotide binding pocket or the HCV helicase nucleotide triphosphate pocket wherein said computer is capable of displaying a three-dimensional representation of that binding pocket.
Abstract:
An apparatus for printing and laminating plastic cards consists of a thermal transfer printing station including ribbon and a thermal printhead for printing an image on a receptor surface of a receptor card, a laminating station including laminating film and a heated laminating roller mounted for engagement with said receptor surface of said receptor card during a laminating operation, and a guided carriage for transporting the receptor card beneath the printhead and the heated laminating roller. The carriage includes a resilient surface for receiving the receptor card with a receptor surface facing upwardly. The carriage is guided on a pair of rails to insure proper registration and tracking of the receptor card. The carriage is driven by a threaded rod which passes through a threaded bore in the carriage wherein rotation of the threaded rod by a motor causes movement of the carriage along the guide rails. The apparatus further includes a hopper for storing a plurality of cards for printing, a cleaning station for cleaning the receptor surface of the card prior to printing, and a pair of output nip rollers including a heated lower roller for engaging and heating a lower surface of the receptor card. The carriage enable the card to be transported by a single carrier from the hopper to the output nip rollers.
Abstract:
A magnetically encoded plastic card production system is provided which includes a supply mechanism for supplying a series of blank plastic cards. An encoder is operatively coupled to the supply mechanism which encodes a magnetic strip on each card. A separating mechanism is operatively coupled following the encoder which has a roller surface for adhesively attracting loose particles from a surface of each card. A design placing mechanism is operatively coupled immediately following the separating mechanism which places a graphic design on each card. In this arrangement, the loose particles are separated from each card subsequent to encoding the magnetic strip on each card and prior to placing the graphic design on each card. A collecting mechanism is operatively coupled to the design placing mechanism which collects each card after each card has passed through the encoder, separating mechanism, and design placing mechanism. A method for producing magnetically encoded plastic cards is also provided.
Abstract:
An ambulatory patient monitoring system (100) is provided for measuring and storing predetermined diagnostic parameters of a patient. The monitoring system includes a personal type computer (120) which may be selectively coupled to the portable portion (102) of system (100). Portable portion (102) may include one or more monitoring modules, such as ECG monitoring unit (110) and blood pressure monitoring unit (210). When ECG monitoring unit (110) and blood pressure monitoring unit (210) are disposed in side-by-side relationship and with respective optical interfaces (50, 254) in optical alignment, the two units operate in concert. ECG monitoring unit (110) supplies an R-wave gating signal to blood pressure monitoring unit (210) for establishing a window in which the receipt of a Korotkoff sound is expected. Additionally, the ECG unit (110) may trigger the blood pressure unit (210) to take a reading responsive to unit (110) identifying a predetermined abnormality in the ECG signal. Alternately, ECG monitoring unit (110) and blood pressure monitoring unit (210) may be used independently of one another as separate monitoring devices.
Abstract:
An ambulatory patient monitoring system (100) is provided for measuring and storing predetermined diagnostic parameters of a patient. The monitoring system includes a personal type computer (120) which may be selectively coupled to the portable portion (102) of system (100). Portable portion (102) may include one or more monitoring modules, such as ECG monitoring unit (110) and blood pressure monitoring unit (210). When ECG monitoring unit (110) and blood pressure monitoring unit (210) are disposed in side-by-side relationship and with respective optical interfaces (50, 254) in optical alignment, the two units operate in concert. ECG monitoring unit (110) supplies an R-wave gating signal to blood pressure monitoring unit (210) for establishing a window in which the receipt of a Korotkoff sound is expected. Additionally, the ECG unit (110) may trigger the blood pressure unit (210) to take a reading responsive to unit (110) identifying a predetermined abnormality in the ECG signal. Alternately, ECG monitoring unit (110) and blood pressure monitoring unit (210) may be used independently of one another as separate monitoring devices.
Abstract:
An ambulatory patient monitoring system (100) is provided for measuring and storing predetermined diagnostic parameters of a patient. The monitoring system includes a personal type computer (120) which may be selectively coupled to the portable portion (102) of system (100). Portable portion (102) may include one or more monitoring modules, such as ECG monitoring unit (110) and blood pressure monitoring unit (210). When ECG monitoring unit (110) and blood pressure monitoring unit (210) are disposed in side-by-side relationship and with respective optical interfaces (50, 254) in optical alignment, the two units operate in concert. ECG monitoring unit (110) supplies an R-wave gating signal to blood pressure monitoring unit (210) for establishing a window in which the receipt of a Korotkoff sound is expected. Additionally, the ECG unit (110) may trigger the blood pressure unit (210) to take a reading responsive to unit (110) identifying a predetermined abnormality in the ECG signal. Alternately, ECG monitoring unit (110) and blood pressure monitoring unit (210) may be used independently of one another as separate monitoring devices.
Abstract:
An automatic high speed Holter scanning system operates in a nonautomatic mode or in an automatic mode to receive electrocardiogram signals which have been prerecorded in dissimilar formats having different known parameters, and to process same in accordance with an operator input. The automatic arrhythmia processor of the present invention detects ectopic cardiac information, stores the detected information in time sequence, and selectively reads out and displays the stored ectopic information in response to operator command. In addition, the automatic arrhythmia processor compares QRS complexes in received ECG signals to a desired normal QRS complex, and continuously updates the R-R interval and area of the normal QRS complex following each comparison of the normal QRS complex with the subsequent QRS complexes. The system of the present invention basically comprises a front panel for operator control, an input interface unit, converter unit, freeze memories with freeze memory control, CRT with CRT control, a chart recorder, an arrhythmia detection and scanning system, a central processing unit, and various front panel lamps and indicators.
Abstract:
An apparatus for printing and laminating plastic cards consists of a thermal transfer printing station including ribbon and a thermal printhead for printing an image on a receptor surface of a receptor card, a laminating station including laminating film and a heated laminating roller mounted for engagement with said receptor surface of said receptor card during a laminating operation, and a guided carriage for transporting the receptor card beneath the printhead and the heated laminating roller. The carriage includes a resilient surface for receiving the receptor card with a receptor surface facing upwardly. The carriage is guided on a pair of rails to insure proper registration and tracking of the receptor card. The carriage is driven by a threaded rod which passes through a threaded bore in the carriage wherein rotation of the threaded rod by a motor causes movement of the carriage along the guide rails. The apparatus further includes a hopper for storing a plurality of cards for printing, a cleaning station for cleaning the receptor surface of the card prior to printing, and a pair of output nip rollers including a heated lower roller for engaging and heating a lower surface of the receptor card. The carriage enable the card to be transported by a single carrier from the hopper to the output nip rollers.
Abstract:
An apparatus and method are described for removing particulate matter from one or more surfaces of a workpiece, such as a credit card blank, prior to printing a graphic design thereon. The apparatus includes a pair of cleaning rollers which engage both sides of the card, the cleaning rollers having an adhesive coating for removing loose particulate matter from the surfaces of the card. The apparatus also includes a stripper system for stripping collected particulate matter away from the cleaning rollers after a predetermined number of cards have been cleaned.