摘要:
Modified influenza virus NS gene segments and nucleic acid sequences encoding such modified influenza virus NS gene segments are described. In certain embodiments, a modified influenza virus NS gene segment comprises an influenza virus NS 1 open reading frame (ORF) lacking a stop codon, a heterologous nucleotide sequence, a 2A autoproteolytic cleavage site or another cleavage site, an NEP ORF, wherein the gene segment has one or more mutations in either the splice acceptor site, splice donor site, or both the splice acceptor and splice donor sites that prevents splicing of mRNA. Also recombinant influenza viruses comprising a modified influenza virus NS gene segment and the use of such viruses are described. The recombinant influenza viruses may be used in the prevention and/or treatment of influenza virus disease or as a delivery vector.
摘要:
The present invention relates to recombinant RNA virus templates derived from and applicable to negative strand naturally non-segmented viruses, including the families Bornaviridae, Filoviridae, and Paramyxoviridae, and methods for generating such recombinant RNA virus templates, wherein the templates are generated from two or more recombinant RNA molecules. The invention relates to the use of segmented recombinant RNA virus templates for naturally non-segmented RNA viruses to express heterologous gene products in appropriate host cell systems and/or to construct recombinant viruses taken from that family and that express, package, and/or present the heterologous gene product. The invention includes the expression products and recombinant and chimeric viruses thus prepared and vaccine and therapeutic formulations comprising the recombinant RNA viruses.
摘要:
The present invention relates, in general, to attenuated negative-strand RNA viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. The invention also relates to the development and use of IFN-deficient systems for selection of such attenuated viruses.In particular, the invention relates to attenuated influenza viruses having modifications to the NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. The mutant viruses replicate in vivo but demonstrate reduced pathogenicity, and therefore are well suited for live virus vaccines, and pharmaceutical formulations.
摘要:
The present invention relates to compounds that modulate the replication of negative-sense, single-stranded RNA viruses, such as influenza virus, and the use of such compounds. The invention relates to methods for increasing the titer of negative-sense, single-stranded RNA viruses, such as influenza virus, in substrates for virus propagation (e.g., tissue culture). The invention also relates to the use of compounds that decrease virus replication as antiviral agents. The invention further relates to methods for identifying compounds that modulate the replication of negative-sense, single-stranded RNA viruses, in particular, influenza virus.
摘要:
Described herein are chimeric Newcastle disease viruses engineered to express a heterologous interferon antagonist and compositions comprising such viruses. The chimeric Newcastle disease viruses and compositions are useful in the treatment of cancer.
摘要:
Provided herein are Compounds that induce interferon production and methods for identifying such Compounds. Also provided herein are compositions comprising such Compounds and methods of using such Compounds to treat interferon-sensitive diseases such as viral infections, cancer, and multiple sclerosis.
摘要:
The present invention relates, in general, to attenuated negative-strand RNA viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. The invention also relates to the development and use of IFN-deficient systems for selection of such attenuated viruses.In particular, the invention relates to attenuated influenza viruses having modifications to the NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. The mutant viruses replicate in vivo but demonstrate reduced pathogenicity, and therefore are well suited for live virus vaccines, and pharmaceutical formulations.
摘要:
The present invention relates, in general, to attenuated swine influenza viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. In particular, the invention relates to attenuated swine influenza viruses having modifications to a swine NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. These viruses replicate in vivo, but demonstrate decreased replication, virulence and increased attenuation, and therefore are well suited for use in live virus vaccines, and pharmaceutical formulations.
摘要:
The present invention relates to compounds that modulate the replication of negative-sense, single-stranded RNA viruses, such as influenza virus, and the use of such compounds. The invention relates to methods for increasing the titer of negative-sense, single-stranded RNA viruses, such as influenza virus, in substrates for virus propagation (e.g., tissue culture). The invention also relates to the use of compounds that decrease virus replication as antiviral agents. The invention further relates to methods for identifying compounds that modulate the replication of negative-sense, single-stranded RNA viruses, in particular, influenza virus.
摘要:
The present invention relates, to novel methods and substrates for the propagation of viruses. The invention relates to IFN-deficient substrates and methods for propagating viruses in these unconventional substrates. In particular, the invention relates to methods of propagating viruses in immature embryonated eggs, preferably six- to nine-day-old chicken eggs. The methods of the invention are particularly attractive for growing viruses suitable for use in vaccine and pharmaceutical formulations.