摘要:
An imaging lidar system is presented which employs a multipulse multiple gating system which is particularly well suited for underwater imaging. The imaging lidar system of this invention utilizes a multipulse Q-switched laser operating within the pumping envelope of discharging flash lamps (or other means) to cumulatively illuminate a single frame on a camera (e.g., CCD camera) while the camera is gated repetitively so that each pulse is "observed" at the same depth; that is, the gated camera views that same illuminated area in the ocean. The sequence is repeated at a frequency which is both the laser pulse repetition rate and the camera frame rate. The present invention also allows the use of multiple cameras with frame addition or with frames processed separately. As a result, energy is extracted from the laser in the form of short (1-10 nsec) pulses by rapidly Q-switching during the time the laser is being pumped by the flashlamps. Provisions are made for subtracting solar noise during daylight, if necessary. The present invention thus provides a technique for extracting the maximum energy from the laser in the form of these short pulses.
摘要:
Variable time delay range gating across an image is accomplished using a single imaging camera. In a preferred embodiment, the imaging camera of the present invention accomplishes adapted range gating and comprises a lens which focuses light onto a substrate having an array of gating electrodes mounted thereon. Both the electrode array and substrate are transparent to light so that the light focussed by the lens passes through the electrode array and substrate to strike a photocathode. The camera of this invention also includes a multiple output power supply connected between the electrode array and a microchannel plate amplifier, an anode, and an imaging array detector which is connected to the anode through a fiber optic bundle. The imaging camera of the present invention will effect adaptive range gating for overcoming the intensity variations and imaging plane problems associated with known light imaging detection and range (lidar) systems.
摘要:
Deployed, air dropped buoys are presented which can be used as calibrated targets for imaging lidar systems. In this way, oceanographic optical measurements can be made to determine in advance how an imaging lidar system will perform at the time of its deployment. This calibrated optical buoy is deployable from an airborne platform. The target is illuminated by an imaging lidar system and the target reflection is compared with the backscattering from the ocean volume illuminated. At the same time, measurements of light intensity are carried out to provide a direct measurement of the attenuation in the ocean. These data are taken at all depths and the results telemetered to the airborne lidar platform. In addition, a simplified embodiment is presented which uses the imaging lidar system to obtain both backscatter and attenuation. This simplified embodiment requires no telemetry.
摘要:
An imaging lidar system is presented which utilizes internal or external transmitter beam pattern referencing for improved imaging lidar performance. In general, the present invention samples the laser output at or near the source to obtain a reference of the signal intensity distribution. This reference signal includes any anomalous spatial intensity distributions (associated with the output of the laser transmitter) which can then be discounted or subtracted out from the signals received from the target area of interest.
摘要:
The present invention employs an optical filter which rejects substantially all wavelengths except for a selected wavelength. This invention eliminates most optical noise (e.g., solar noise) in LIDAR (light detection and ranging) imaging systems as well as LIDAR bathymetry systems and underwater submarine communication systems. The selected wavelength corresponds to the transmission wavelength of the laser. In accordance with the LIDAR systems of the present invention, a laser beam of the selected wavelength is projected at a body of water wherein a return beam is generated. The reflected or backscattered return beam is collected by optics which then directs the beam at the filter. The beam is filtered so that substantially all other wavelengths not corresponding to the selected wavelength are rejected, thereby eliminating most optical noise, particularly solar noise. The filtered beam is then detected. In accordance with the underwater communication system of the present invention, an encoded laser beam of the selected wavelength is projected at an underwear location (e.g., submarine). This beam is collected by optics which then directs the beam at the filter. Again, the beam is filtered so that substantially all other wavelengths not corresponding to the selected wavelength are rejected, thereby eliminating most optical noise, particularly solar noise. The filtered beam is then detected and provides a signal to be decoded.
摘要:
The present invention uses tunable and fixed frequency lasers as an optical light source in imaging laser detection and ranging (LIDAR) systems. This invention provides a high energy, short pulse length laser output which is tunable to or set at a desired wavelength. The tuning is used for performance optimization of lidar system; and for scientific investigations carried out using these systems. An example of performance optimization is the tuning to or setting of the laser at the so-called Jerlov minimum, which is dependent upon the optical characteristics of the particular water used. The improved system may be used for scientific investigation, such as determining K.sub.s (the frequency-dependent optical attenuation coefficient) in the ocean at depth, as well as imaging various opaque objects under battlefield conditions, at depth. This invention has the effect of significantly improving the optical signal to noise ratio for all of these applications.
摘要:
A novel data processing technique is provided for employing a physical model as an element in a process for automatic target detection of a target viewed by an imaging lidar system. The present invention obtains estimates for the mean and variance of the probability distributions for random video levels which are output from a camera. These estimates are obtained under various assumptions about the state of the target.
摘要:
An imaging lidar system for underwater applications is presented which is well suited for imaging and detecting underwater targets suspended above and on the bottom in shallow and coastal water. The present invention provides the capability for rapid and reliable search, detection, classification and localization of objects in the surf zone which may present hazards to navigation and utilization of coastal areas as well as undesirable effluents and biological fouling of underwater objects. The present invention provides an improved bottom tracker, improved ability to deal with brightness variation and surface glint, and computerized real time detection algorithms.
摘要:
An imaging UV/visible fluorosensing and Raman lidar system comprises an optical sensor for simultaneously measuring temporally, spatially and spectrally resolved laser backscatter from on the land, on or beneath the surface of bodies of water and in the atmosphere that utilizes "active" interrogation or "passive" interrogation for remotely and non-destructively probing the spectrally-dependent optical properties of a scene. In the "active" mode, the optical sensor comprises a transmitter (preferably a tunable solid state laser) which emits pulses of coherent light through a variable or adjustable field-of-view telescope whereupon the light pulses are then propagated towards a scene (e.g., land, sea or atmosphere). Thereafter, laser backscatter is collected by a second variable field-of-view telescope and directed to an imaging system and spectrally dispersive optical subsystem.
摘要:
An imaging UV/visible fluorosensing and Raman lidar system comprises an optical sensor for simultaneously measuring temporally, spatially and spectrally resolved laser backscatter from on the land, on or beneath the surface of bodies of water and in the atmosphere. The present invention utilizes "active" interrogation or "passive" interrogation for remotely and non destructively probing the spectrally-dependent optical properties of a scene. In the "active" mode, the optical sensor of this invention comprises a transmitter (preferably a tunable solid state laser) which emits pulses of coherent light through a variable or adjustable field-of-view telescope whereupon the light pulses are then propagated towards a scene (e.g., land, sea or atmosphere). Thereafter, laser backscatter is collected by a second variable field-of-view telescope and directed to an imaging system and spectrally dispersive optical subsystem.