Abstract:
A method, system and computer-usable medium are disclosed for managing prefetch streams in a virtual machine environment. Compiled application code in a first core, which comprises a Special Purpose Register (SPR) and a plurality of first prefetch engines, initiates a prefetch stream request. If the prefetch stream request cannot be initiated due to unavailability of a first prefetch engine, then an indicator bit indicating a Prefetch Stream Dispatch Fault is set in the SPR, causing a Hypervisor to interrupt the execution of the prefetch stream request. The Hypervisor then calls its associated operating system (OS), which determines prefetch engine availability for a second core comprising a plurality of second prefetch engines. If a second prefetch engine is available, then the OS migrates the prefetch stream request from the first core to the second core, where it is initiated on an available second prefetch engine.
Abstract:
A method, system and computer-usable medium are disclosed for managing prefetch streams in a virtual machine environment. Compiled application code in a first core, which comprises a Special Purpose Register (SPR) and a plurality of first prefetch engines, initiates a prefetch stream request. If the prefetch stream request cannot be initiated due to unavailability of a first prefetch engine, then an indicator bit indicating a Prefetch Stream Dispatch Fault is set in the SPR, causing a Hypervisor to interrupt the execution of the prefetch stream request. The Hypervisor then calls its associated operating system (OS), which determines prefetch engine availability for a second core comprising a plurality of second prefetch engines. If a second prefetch engine is available, then the OS migrates the prefetch stream request from the first core to the second core, where it is initiated on an available second prefetch engine.
Abstract:
Functionality is implemented to determine that a plurality of multi-core processing units of a system are configured in accordance with a plurality of operating performance modes. It is determined that a first of the plurality of operating performance modes satisfies a first performance criterion that corresponds to a first workload of a first logical partition of the system. Accordingly, the first logical partition is associated with a first set of the plurality of multi-core processing units that are configured in accordance with the first operating performance mode. It is determined that a second of the plurality of operating performance modes satisfies a second performance criterion that corresponds to a second workload of a second logical partition of the system. Accordingly, the second logical partition is associated with a second set of the plurality of multi-core processing units that are configured in accordance with the second operating performance mode.
Abstract:
Functionality is implemented to determine that a plurality of multi-core processing units of a system are configured in accordance with a plurality of operating performance modes. It is determined that a first of the plurality of operating performance modes satisfies a first performance criterion that corresponds to a first workload of a first logical partition of the system. Accordingly, the first logical partition is associated with a first set of the plurality of multi-core processing units that are configured in accordance with the first operating performance mode. It is determined that a second of the plurality of operating performance modes satisfies a second performance criterion that corresponds to a second workload of a second logical partition of the system. Accordingly, the second logical partition is associated with a second set of the plurality of multi-core processing units that are configured in accordance with the second operating performance mode.
Abstract:
A method, system and computer-usable medium are disclosed for managing prefetch streams in a virtual machine environment. Compiled application code in a first core, which comprises a Special Purpose Register (SPR) and a plurality of first prefetch engines, initiates a prefetch stream request. If the prefetch stream request cannot be initiated due to unavailability of a first prefetch engine, then an indicator bit indicating a Prefetch Stream Dispatch Fault is set in the SPR, causing a Hypervisor to interrupt the execution of the prefetch stream request. The Hypervisor then calls its associated operating system (OS), which determines prefetch engine availability for a second core comprising a plurality of second prefetch engines. If a second prefetch engine is available, then the OS migrates the prefetch stream request from the first core to the second core, where it is initiated on an available second prefetch engine.
Abstract:
Mechanisms for priority control in resource allocation is provided. With these mechanisms, when a unit makes a request to a token manager, the unit identifies the priority of its request as well as the resource which it desires to access and the unit's resource access group (RAG). This information is used to set a value of a storage device associated with the resource, priority, and RAG identified in the request. When the token manager generates and grants a token to the RAG, the token is in turn granted to a unit within the RAG based on a priority of the pending requests identified in the storage devices associated with the resource and RAG. Priority pointers are utilized to provide a round-robin fairness scheme between high and low priority requests within the RAG for the resource.
Abstract:
A method, system and computer-usable medium are disclosed for managing transient instruction streams. Transient flags are defined in Branch-and-Link (BRL) instructions that are known to be infrequently executed. A bit is likewise set in a Special Purpose Register (SPR) of the hardware (e.g., a core) that is executing an instruction request thread. Subsequent fetches or prefetches in the request thread are treated as transient and are not written to lower-level caches. If an instruction is non-transient, and if a lower-level cache is non-inclusive of the L1 instruction cache, a fetch or prefetch miss that is obtained from memory may be written in both the L1 and the lower-level cache. If it is not inclusive, a cast-out from the L1 instruction cache may be written in the lower-level cache.
Abstract:
An access speculation predictor is provided that may be implemented using idle command processing resources, such as registers of idle finite state machines (FSMs) in a memory controller. The access speculation predictor may predict whether to perform speculative retrieval of data for a data request from a main memory of the data processing system based on history information stored for a memory region targeted by the data request. In particular, a first address may be extracted from the data request and compared to memory regions associated with second addresses stored in address registers of a plurality of FSMs of the memory controller. A FSM whose memory region includes the first address may be selected. History information for the memory region may be obtained from the selected FSM. The history information may be used to control whether to speculatively retrieve the data for the data request from a main memory.
Abstract:
A method, system and computer-usable medium are disclosed for managing transient instruction streams. Transient flags are defined in Branch-and-Link (BRL) instructions that are known to be infrequently executed. A bit is likewise set in a Special Purpose Register (SPR) of the hardware (e.g., a core) that is executing an instruction request thread. Subsequent fetches or prefetches in the request thread are treated as transient and are not written to lower-level caches. If an instruction is non-transient, and if a lower-level cache is non-inclusive of the L1 instruction cache, a fetch or prefetch miss that is obtained from memory may be written in both the L1 and the lower-level cache. If it is not inclusive, a cast-out from the L1 instruction cache may be written in the lower-level cache.
Abstract:
An approach is provided to identifying cache extension sizes that correspond to different partitions that are running on a computer system. The approach extends a first hardware cache associated with a first processing core that is included in the processor's silicon substrate with a first memory allocation from a system memory area, with the system memory area being external to the silicon substrate and the first memory allocation corresponding to one of the plurality of cache extension sizes that corresponds to one of the partitions that is running on the computer system. The approach further extends a second hardware cache associated with a second processing core also included in the processor's silicon substrate with a second memory allocation from the system memory area with the second memory allocation corresponding to another of the cache extension sizes that corresponds to a different partitions that is being executed by the second processing core.