Abstract:
Compounds of Formula 1, as shown below and defined herein: and pharmaceutically acceptable salts, synthesis, intermediates, formulations, and methods of disease treatment therewith, including cancers mediated at least in part by FAK.
Abstract:
The presently-disclosed subject matter provides compositions and methods for treating a cancer by providing a composition comprising a biocompatible polymeric matrix incorporating an effective amount of a phytochemical agent, a combination of phytochemical agents, or a phytochemical agent and a chemotherapeutic agent. Further, provided is a device for uterine cervical insertion for local delivery.
Abstract:
Compositions are provided that comprises a biocompatible polymeric matrix incorporating an effective amount of a phytochemical agent, a combination of phytochemical agents, or a phytochemical agent and one or more additional therapeutic agents. Methods of treating a cancer using the compositions are further provided.
Abstract:
Compounds of Formula 1, as shown below and defined herein: pharmaceutically acceptable salts thereof, synthesis, intermediates, formulations, and methods of disease treatment therewith, including treatment of cancers, such as tumors driven at least in part by TAK1 or for which an appropriate TAK1 inhibitor is effective. This Abstract is not limiting of the invention.
Abstract:
Compounds of Formula I, as shown below and defined herein: pharmaceutically acceptable salts, synthesis, intermediates, formulations, and methods of disease treatment therewith, including cancers mediated at least in part by RON and/or MET.
Abstract:
Compositions are provided that comprises a biocompatible polymeric matrix incorporating an effective amount of a phytochemical agent, a combination of phytochemical agents, or a phytochemical agent and one or more additional therapeutic agents. Methods of treating a cancer using the compositions are further provided.
Abstract:
Compounds of Formula 1, as shown below and defined herein: and pharmaceutically acceptable salts, synthesis, intermediates, formulations, and methods of disease treatment therewith, including cancers mediated at least in part by FAK.
Abstract:
Disclosed are processes for the preparation of compounds of the formula (I): H2N—(CH2)n—A—(CH2)m—NH2, or (II): H2N—(CH2)n—NH—C(═NR1)—NH—(CH2)m—NH2, wherein n and m are each independently an integer from 2 to 8; A is selected from the group consisting of —NR1—, —NR1—(CH2)r—NR1— and —NR1—(CH2)r—NR1—(CH2)z—NR1—, wherein r and z are an integer ranging from 2 to 8; and R1 is hydrogen or a protecting group having a carbonyl group.
Abstract:
The present invention provides a method for in vivo delivery of endothal to a target cell in a subject, the method comprising administering to the subject a compound having the structure: Formula (I).
Abstract:
This invention describes a simple, rapid and cost-effective method to isolate bulk quantities of relatively pure and enriched anthocyanidins and other plant bioactives. The method is based on the principle of solubility. Some bioactives (anthocyanidins) were extracted in an aqueous solvent, transferred to a non-aqueous solvent and finally insolubilized by adding a miscible solvent in which the bioactive was insoluble. Thus, anthocyanidins were isolated from anthocyanin-enriched berries or non-enriched, dark-colored fruits, vegetables and grains by extraction of anthocyanins, acid hydrolysis, and extraction of the resulting anthocyanidins, followed by their insolubilization (precipitation). Some bioactives (hydrophobic and hydrophilic) were extracted in a solvent with high solubility and then directly insolubilized by adding a miscible solvent in which the bioactive was insoluble, for example, withaferin A from enriched Withania somnifera and punicalagins from enriched punica extract.