摘要:
A high ratio epicyclic gear train (A) with improved load carrying capability for transmitting power from a driven input shaft, such as may be driven by a turbine engine or engines, to a output shaft, as may be coupled to a rotor of a rotary wing aircraft. The compound epicyclic gear train incorporates a load sharing mechanism consisting of a drive sun gear (10), an idler sun gear (11), a ring gear (12), a set of drive planet gear assemblies (13), a set of idler planet gear assemblies (14), and a planet carrier assembly (15) coupled to provide at least two power pathways through said epicyclic gear train (A) between said driven input shaft and said output shaft to provide an improved overall power density of the transmission.
摘要:
A method for use with a transmission system (A, A1, B) incorporating a split gear assembly (20, 120, 220) for splitting an applied input load between two or more reaction gears (30, 40, 130, 140, 230, 240) or pathways to selectively positioning a support bearing (50, 150, 250) to achieve an optimized load distribution (LRT) among a set of drive planet pinions (22, 122, 222) and idler planet pinions (70, 170, 270) in the transmission system.
摘要:
A method for treating a substrate (such as the gears of a gear set) to provide the substrate with both wear protection and corrosion resistance is disclosed. The method comprises providing the substrate with a wear protection layer and providing corrosion resistant layer. The wear protection layer can be applied to the gear and then the corrosion resistant layer can be applied over the wear resistant layer. Alternatively, the corrosion resistant lay can be provided and then the wear resistant layer can be formed over the corrosion resistant layer.
摘要:
A multispeed transmission includes a range section having a plural cone synchronizer. The plural cone synchronizer is utilized to assist in transmitting the high torque load typically found in low range. The inventive synchronizer includes a unique structure for selectively connecting the outer and inner cones.
摘要:
An epicyclic gear system (A) includes helical sun and ring gears (2, 4) and helical planet pinions (6) located between and engaged with the sun and ring gears. The gear system also includes a carrier (8) having an end wall (12) and flexpins (20) cantilevered from the end wall and extended into the planet pinions. Each flexpin at its end remote from the end wall carries a sleeve (22) that extends back over the flexpin where it is spaced from the flexpin. The planet pinion for the flexpin rotates around the sleeve on a bearing (24). The arrangement is such that the flexpin will flex adjacent to the carrier end wall circumferentially along the pitch circle of the carrier in one direction and circumferentially in the opposite direction adjacent to attachment of the sleeve. But the helical gear imparts a couple to the planet pinion that seeks to tilt the sleeve radially toward or away from the main axis of the system. A deflection inhibitor (I) lies between each flexpin and the sleeve surrounding it to prevent the radial deflection.
摘要:
A method and apparatus for a transmission system selectively positioning sets of planet gear support bearings (50, 55, 80, 90) to achieve an optimized load distribution among a set of drive planet pinions (22) and a set of idler planet pinions (70) disposed in engagement between two reaction gears (30, 40) in the transmission system (A, A1), for splitting an applied load between at least two pathways between an input and an output.
摘要:
A method for use with a transmission system (A, A1, B) incorporating a split gear assembly (20, 120, 220) for splitting an applied input load between two or more reaction gears (30, 40, 130, 140, 230, 240) or pathways to selectively positioning a support bearing (50, 150, 250) to achieve an optimized load distribution (LRT) among a set of drive planet pinions (22, 122, 222) and idler planet pinions (70, 170, 270) in the transmission system.
摘要:
An epicyclic gear system (A) includes sun and ring gears (2, 4) and planet pinions (6, 8) arranged in two side-by-side arrays (a, b) between the sun and ring gears, there also being a carrier (10, 50) to which planet pinions are coupled through flexpins (30). The carrier has primary and secondary walls (20, 22) between which the pinions are located and webs (24) connecting the walls. The flexpins for one array of pinions are cantilevered from the primary wall and the flexpins for the other array of pinions are cantilevered from the secondary wall. When the gear system operates, the carrier along its primary wall is subjected to an externally applied torque which transfers through the system at the planet pinions of the two arrays. The load path (pa) for the pinions at the primary wall is shorter than the load path (pb) for the pinions at the secondary wall, and this disparity causes the carrier to distort. To compensate for this distortion so that the pinions of the two arrays will mesh more evenly with the sun and ring gears, the flexpins of the first array are offset angularly with respect to the flexpins of the second array, or the teeth of the pinions in the first array are narrower than the teeth of the pinions of the second array, or the primary wall of the carrier has areas (40, 44) of weakness where the flexpins of the first array are cantilevered from it, or the flexpins of the first array are more flexible than the flexpins of the second array. As a consequence, the pinions of the two arrays mesh better under load with the sun and ring gears and share the transfer of torque more evenly.
摘要:
A meshing gear assembly includes a toothed disk that is supported on a first gear so as to be frictionally engaged therewith, but rotationally and radially movable relative thereto. The circumferential width of each tooth formed on the toothed disk is preferably larger than the circumferential width of each tooth formed on the first gear, and the outer diameter of the toothed disk can be larger than the outer diameter of the first gear. The first gear and the toothed disk mesh with a second gear such that as the second gear rotates, the toothed disk and the first gear also rotate. However, the toothed disk and the first gear rotate at different speeds because the difference in the number of teeth formed thereon. Because the teeth formed on the toothed disk have a larger circumferential thickness and a larger outer diameter than the teeth formed on the first gear, a tight meshing engagement with the second gear is provided. This tight meshing engagement, in combination with the frictional engagement of the toothed disk with the first gear, takes up backlash between the first gear and the second gear.
摘要:
A multi-disk synchronizer is provided wherein the complicated portions of the elements required for the neutral detent mechanism, the blocking mechanism and to prevent overtravel of the shift collar all are provided in a blocking insert held in a slot in the shift collar. The blocking insert preferably is cast, and this mechanism can be used with any type of synchronizer. In addition, the synchronizer rings for the multi-disk synchronizer is formed by stamping and pressing heavy sheet metal rather than by casting and machining a part. The combination of the blocking insert and the stamped synchronizer rings significantly reduces the machining required to manufacture the synchronizer.