Abstract:
A vanity plate assembly includes a plate that has indicia printed thereon. A strip is positionable against the plate. A pair of brackets is provided and each of the brackets releasably engages the strip. A pair of fasteners is each extendable through the plate, the strip and the brackets for coupling the plate, the strip and the brackets together. A pair of couplers is provided and each of the couplers releasably engages a respective one of the brackets. Each of the couplers releasably engages a respective one of a pair of chain supports on a hitch receiver of a vehicle. In this way the plate is suspended beneath the hitch receiver without interfering with using the hitch receiver.
Abstract:
A wall film monitoring system includes first and second microwave mirrors in a plasma processing chamber each having a concave surface. The concave surface of the second mirror is oriented opposite the concave surface of the first mirror. A power source is coupled to the first mirror and configured to produce a microwave signal. A detector is coupled to at least one of the first mirror and the second mirror and configured to measure a vacuum resonance voltage of the microwave signal. A control system is connected to the detector that compares a first measured voltage and a second measured voltage and determines whether the second voltage exceeds a threshold value. A method of monitoring wall film in a plasma chamber includes loading a wafer in the chamber, setting a frequency of a microwave signal output to a resonance frequency, and measuring a first vacuum resonance voltage of the microwave signal. The method includes processing the wafer, measuring a second vacuum resonance voltage of the microwave signal, and determining whether the second measured voltage exceeds a threshold value using the first measured voltage as a reference value.
Abstract:
A process monitoring system (100) for monitoring a plasma processing system. The process monitoring system (100) includes a plurality of processing subsystems (120), and a control system (110) coupled to the processing subsystems (120). The control system (110) is configured to receive monitor data from the processing subsystems (120) and send control data to the processing subsystems (120). The process monitoring system (100) also includes an external interface (140) coupled to the control system (110), where the external interface (140) includes a paging system. The process monitoring system further includes a man-machine interface (MMI) coupled to the control system (110). The MMI is configured to display the monitor data, display the control data, and access the paging system.
Abstract:
A RF sensor for sensing and analyzing parameters of plasma processing. The RF sensor is provided with a plasma processing tool and an antenna for receiving RF energy radiated from the plasma processing tool. The antenna is located proximate to the plasma processing tool so as to be non-invasive. Additionally, the RF sensor may be configured for wideband reception of multiple harmonics of the RF energy that is radiated from the plasma processing tool. Further, the RF sensor may be coupled to a high pass filter and a processor for processing the received RF energy. Additionally, the antenna may be located within an enclosure with absorbers to reduce the interference experienced by the RF sensor. Additionally, a tool control may be coupled to the processor to provided to adjust and maintain various parameters of plasma processing according to the information provided by the received RF energy.
Abstract:
A system and method for processing substrates having an improved matching system. A matching controller (1) is utilized to control multiple matching networks (MNA, MNB, MNC), thus providing improved, more rapid and stable matching. The matching controller can also automatically set up initial matching conditions required during and immediately after plasma initiation, to thereby provide faster and more reliable initial matching, and reduced operator involvement. The system also provides improved instrumentation, for more accurate phase and amplitude detection, and an improved arrangement of power detectors (6A, 6B, 6C). The matching network (MNA, MNB, MNC) also incorporates a circuit for reliable control of tunable elements in a matching network, and a device for protecting tunable elements against damage are also provided.
Abstract:
An apparatus and a method for monitoring an optical transmission line. An optical pilot signal of a predetermined duration is transmitted along said optical transmission line and a return signal is sent back from a signal returner along the same transmission line corresponding to at least part of said optical pilot signal. The signal returner is positioned at a predetermined point along the optical transmission line. An optical detection apparatus detects said optical pilot signal and also detects said return signal. A monitoring unit receives detection signals from said optical detection apparatus and determins the time relationship between the predetermined duration of the optical pilot signal and the round-trip transit time of the optical pilot signal. A first monitoring signal is generated when the determined time relationship has a predetermined value, and at least one further monitoring signal is generated in other cases.
Abstract:
A method for controlling the non-uniformities of plasma-processed semiconductor wafers by supplying the plasma with two electrical signals: a primary electrical signal that is used to excite the plasma, and a supplemental electrical signal. The supplemental signal may be composed of a plurality of electrical signals, each with a frequency harmonic to that of the primary signal. The phase of the supplemental signal is controlled with respect to the phase of the primary signal. By adjusting the parameters of the supplemental signal with respect to the primary signal, the user can control the parameters of the resultant plasma and, therefore, control the non-uniformities induced in the semiconductor wafer.
Abstract:
A system and method for maintaining a plasma in a plasma region by supplying RF power at a fundamental frequency to the plasma region together with a gas in order to create an RF electromagnetic field which interacts with the gas to create a plasma that contains electromagnetic energy components at frequencies that are harmonics of the fundamental frequency. The components at frequencies that are harmonics of the fundamental frequency are reduced by placing RF energy absorbing resistive loads in energy receiving communication with the plasma, the resistive loads having a frequency dependent attenuation characteristic such that the resistive loads attenuate electrical energy at frequencies higher than the fundamental frequency more strongly than energy at the fundamental frequency.
Abstract:
A wall film monitoring system includes first and second microwave mirrors in a plasma processing chamber each having a concave surface. The concave surface of the second mirror is oriented opposite the concave surface of the first mirror. A power source is coupled to the first mirror and configured to produce a microwave signal. A detector is coupled to at least one of the first mirror and the second mirror and configured to measure a vacuum resonance voltage of the microwave signal. A control system is connected to the detector that compares a first measured voltage and a second measured voltage and determines whether the second voltage exceeds a threshold value. A method of monitoring wall film in a plasma chamber includes loading a wafer in the chamber, setting a frequency of a microwave signal output to a resonance frequency, and measuring a first vacuum resonance voltage of the microwave signal. The method includes processing the wafer, measuring a second vacuum resonance voltage of the microwave signal, and determining whether the second measured voltage exceeds a threshold value using the first measured voltage as a reference value.
Abstract:
A non-linear test load is provided for calibrating a plasma system. The test load is a substrate for modeling the electrical characteristics of the plasma such that multi frequency testing can be performed in the absence of a plasma reaction. An exemplary substrate includes a first semiconductor junction for providing a non-linear response to the multi-frequency RF source provided from the anode. The first semiconductor junction exhibits a first capacitance for modeling a first plasma sheath of the anode. A plasma component is responsive to the first semiconductor junction and exhibits a resistance for modeling a resistance of the plasma, an inductance for modeling an inductance of the plasma, and a gap capacitance for modeling capacitance of the plasma. A second semiconductor junction is responsive to the plasma component for providing a non-linear response to the multi-frequency RF source provided from the plasma component, the second semiconductor junction exhibits a second capacitance for modeling a second plasma sheath of the cathode.