摘要:
A method for determining 3D distances on a 2D pixelized image of a part or object includes acquiring a real 2D pixelized image of the object, creating a simulated image of the object using the 3D CAD model and the 2D pixelized image, determining a specified cost function comparing the simulated image with the real 2D pixilated image and repositioning the simulated image in accordance with iterated adjustments of a relative position between the CAD model and the 2D pixilated image to change the simulated image until the specified cost function is below a specified value. Then, the workstation is used to generate a 3D distance scale matrix using the repositioned simulated image, and to measure and display distances between selected pixels on a surface of the real image using 2D distances on the 2D pixelized image of the object and the 3D distance scale matrix.
摘要:
A method for determining 3D distances on a 2D pixelized image of a part or object includes acquiring a real 2D pixelized image of the object, creating a simulated image of the object using the 3D CAD model and the 2D pixelized image, determining a specified cost function comparing the simulated image with the real 2D pixilated image and repositioning the simulated image in accordance with iterated adjustments of a relative position between the CAD model and the XID pixilated image to change the simulated image until the specified cost function is below a specified value. Then, the workstation is used to generate a 3D distance scale matrix using the repositioned simulated image, and to measure and display distances between selected pixels on a surface of the real image using 2D distances on the 2D pixelized image of the object and the 3D distance scale matrix.
摘要:
An inspection system is provided to examine internal structures of a target material. This inspection system combines an ultrasonic inspection system and a thermographic inspection system. The thermographic inspection system is attached to ultrasonic inspection and modified to enable thermographic inspection of target materials at distances compatible with laser ultrasonic inspection. Quantitative information is obtained using depth infrared (IR) imaging on the target material. The IR imaging and laser-ultrasound results are combined and projected on a 3D projection of complex shape composites. The thermographic results complement the laser-ultrasound results and yield information about the target material's internal structure that is more complete and more reliable, especially when the target materials are thin composite parts.
摘要:
A method and system for determining thermal diffusivity and porosity of an article are provided. The method comprises heating a surface of the article, capturing image data corresponding to an evolution of lateral heat flow from the surface of the article, applying a thermal time of flight analysis on the image data and determining thermal diffusivity and porosity values of the article using the thermal time of flight analysis for the lateral heat flow.
摘要:
A non-destructive evaluation system and method is provided for detecting flaws in an object. The system includes a lamp for impinging the object with optical pulses and a focal plane array camera configured to capture the images corresponding to evolution of heat due to an impact of the optical pulses in the object. The system also includes an image acquisition system for capturing data corresponding to the images from the focal plane array camera. Both transmission mode imaging and reflection mode imaging techniques are used in an exemplary embodiment. A time of flight analysis system is also provided for analyzing the data from both transmission mode imaging technique and reflection mode imaging technique. The data from transmission mode imaging is used to determine thickness values at different points in the data and for determining location of flaws using the thickness values. The data from reflection mode imaging is used for determining depth of these flaws.
摘要:
An inspection system is provided to examine internal structures of a target material. This inspection system includes a generation laser, an ultrasonic detection system, a thermal imaging system, and a processor/control module. The generation laser produces a pulsed laser beam that is operable to induce ultrasonic displacements and thermal transients at the target material. The ultrasonic detection system detects ultrasonic surface displacements at the target material. The thermal imaging system detects thermal transients at the target material. The processor analyzes both detected ultrasonic displacements and thermal imagery of the target material to yield information about the target material's internal structure.
摘要:
An inspection system is provided to examine internal structures of a target material. This inspection system combines an ultrasonic inspection system and a thermographic inspection system. The thermographic inspection system is attached to ultrasonic inspection and modified to enable thermographic inspection of target materials at distances compatible with laser ultrasonic inspection. Quantitative information is obtained using depth infrared (IR) imaging on the target material. The IR imaging and laser-ultrasound results are combined and projected on a 3D projection of complex shape composites. The thermographic results complement the laser-ultrasound results and yield information about the target material's internal structure that is more complete and more reliable, especially when the target materials are thin composite parts.
摘要:
A method for identifying types of flaws in a composite object includes: a) rapidly heating the surface of the object; b) recording pixel intensities in a sequence of IR images; c) determining temperature-versus-time data for each of the pixels from the IR images; and d) determining what type of flaw if any corresponds to each of the pixels using the temperature-versus-time data determined in step (c). A contrast curve derived from the temperature-versus-time data may be used in determining what type of flaws if any corresponds to each of the pixels. The contrast curve may be determined by subtracting a synthetic reference curve from a temperature time curve from the temperature-versus-time data. The types of flaws may be determined from size and/or shapes of peaks in the contrast curves. Some flaws are delaminations, layers of porosity, and uniformly distributed porosity.
摘要:
A system for locating a failure event in a sample is disclosed. The system includes at least one sensor configured to detect acoustic energy corresponding to the failure event in the sample. The system also includes an infrared camera configured to detect a thermal release of energy corresponding to the failure event in the sample.
摘要:
A non-destructive evaluation system and method is provided for detecting flaws in an object. The system includes a lamp for impinging the object with optical pulses and a focal plane array camera configured to capture the images corresponding to evolution of heat due to an impact of the optical pulses in the object. The system also includes an image acquisition system for capturing data corresponding to the images from the focal plane array camera. Both transmission mode imaging and reflection mode imaging techniques are used in an exemplary embodiment. A time of flight analysis system is also provided for analyzing the data from both transmission mode imaging technique and reflection mode imaging technique. The data from transmission mode imaging is used to determine thickness values at different points in the data and for determining location of flaws using the thickness values. The data from reflection mode imaging is used for determining depth of these flaws.