System and Method for Partitioning Chemometric Analysis
    1.
    发明申请
    System and Method for Partitioning Chemometric Analysis 审中-公开
    分析化学计量分析的系统和方法

    公开(公告)号:US20090171593A1

    公开(公告)日:2009-07-02

    申请号:US11918486

    申请日:2006-02-23

    申请人: Robert Schweitzer

    发明人: Robert Schweitzer

    IPC分类号: G01N31/00 G06F19/00

    摘要: In one embodiment, the disclosure relates to a method for conducting a spectral library search to identify an un-known compound by acquiring one or more spectra of the compound; representing each spectrum as a target vector; providing an n-dimensional space having a plurality of partitioned spaces, at least one of the partitioned spaces containing at least one known vector representing a known material; mapping each target vector in one of the plurality of the partitioned spaces to form a mapped partitioned space; identifying one or more known vectors within the mapped partitioned space which approximate the target vector; and identifying the unknown compound by comparing the target vector to the known vectors within the mapped partitioned space which closely approximate the target vector.

    摘要翻译: 在一个实施方案中,本公开涉及通过获取化合物的一个或多个光谱进行光谱库搜索以鉴定未知化合物的方法; 将每个频谱表示为目标矢量; 提供具有多个分隔空间的n维空间,所述分隔空间中的至少一个包含表示已知材料的至少一个已知矢量; 映射所述多个分割空间中的一个中的每个目标矢量以形成映射的分区空间; 识别所映射的分区空间内的近似所述目标向量的一个或多个已知向量; 并通过将目标矢量与紧密接近目标矢量的映射分区空间内的已知矢量进行比较来识别未知化合物。

    Method and apparatus for spectral mixture resolution
    2.
    发明申请
    Method and apparatus for spectral mixture resolution 有权
    光谱混合分辨率的方法和装置

    公开(公告)号:US20090043514A1

    公开(公告)日:2009-02-12

    申请号:US11918490

    申请日:2005-04-15

    申请人: Robert Schweitzer

    发明人: Robert Schweitzer

    IPC分类号: G01N31/00

    摘要: The spectral method for determining the concentrations of a substance in a mixture of any number of substances is defined by a chemical image having a plurality of pixels (520). The method includes steps of providing a spectrum for each of the number of substances in the mixture (530), and obtaining the spectrum for one of the plurality of pixels, and calculating a plurality of estimated concentrations of each substance in the mixture as a function of the spectrum for each substance and the spectrum for the pixel, and calculating a deviation value for each of the plurality of estimated concentrations as a function of the spectrum of each of the number of substances in the mixture, and selecting the estimated concentration with the lowest deviation factor as a most likely concentration of each substance in the mixture (550).

    摘要翻译: 用于确定任意数量物质的混合物中的物质的浓度的光谱方法由具有多个像素的化学图像(520)定义。 该方法包括以下步骤:为混合物(530)中的每一种物质提供光谱,并获得多个像素之一的光谱,并计算混合物中每种物质的多个估计浓度作为一个函数 的每个物质的光谱和像素的光谱,并且根据混合物中的每个物质的光谱计算多个估计浓度中的每一个的偏差值,并且选择估计浓度 最低偏差因子作为混合物中每种物质的最可能浓度(550)。

    Adaptive Method for Outlier Detection and Spectral Library Augmentation
    3.
    发明申请
    Adaptive Method for Outlier Detection and Spectral Library Augmentation 审中-公开
    异常检测和光谱库扩增的自适应方法

    公开(公告)号:US20090012723A1

    公开(公告)日:2009-01-08

    申请号:US12196921

    申请日:2008-08-22

    IPC分类号: G01N31/00 G06F19/00

    CPC分类号: G16C20/20 G16C20/90

    摘要: A method for analyzing data from an unknown substance, whereby target data representative of an unknown substance is received and compared to reference data associated with one or more known substances. Such comparison determines one or more candidate substances. After determining candidate substances, it is determined if the target data is unique to a candidate substance. If the target data is unique to one of the candidate substances, then this determination is confirmed with fusion. If the target data is not unique, then the target data may be subjected to fusion and unmixing with fusion. If analysis of the target data determines that an outlier is present, then this target data is added to a pool of unassigned data. The addition of this new data to the pool of unassigned data may result in clustering of enough of the previously unassigned data to form a new candidate class. If analysis of the target data does not detect an outlier, but cannot be matched to an existing candidate class, the target data in this case can also be added to the pool of unassigned data. If no outlier is detected, and the Matching Existing Class step is successful, then the target data is added to the matched class. If this candidate class is confirmed, then it can be added to the list of existing classes.

    摘要翻译: 用于分析来自未知物质的数据的方法,由此接收表示未知物质的目标数据并与与一种或多种已知物质相关联的参考数据进行比较。 这种比较确定一种或多种候选物质。 在确定候选物质之后,确定目标数据是否对于候选物质是唯一的。 如果目标数据对于候选物质之一是唯一的,则通过融合确认该确定。 如果目标数据不是唯一的,则可以对目标数据进行融合和解混合。 如果目标数据的分析确定存在异常值,则该目标数据被添加到未分配数据的池中。 将此新数据添加到未分配数据池可能会导致足够的以前未分配数据的聚类,以形成新的候选类。 如果目标数据的分析没有检测到异常值,但是不能与现有候选类别匹配,则在这种情况下的目标数据也可以被添加到未分配数据的池中。 如果没有检测到异常值,并且匹配现有类步骤成功,则将目标数据添加到匹配的类中。 如果这个候选类被确认,那么它可以被添加到现有类的列表中。

    Method for identifying components of a mixture via spectral analysis
    4.
    发明授权
    Method for identifying components of a mixture via spectral analysis 有权
    通过光谱分析识别混合物的组分的方法

    公开(公告)号:US07409299B2

    公开(公告)日:2008-08-05

    申请号:US11407392

    申请日:2006-04-18

    IPC分类号: G01N31/00

    摘要: Spectra data collected from a mixture defines an n-dimensional data space (n is the number of data points), and application of PCA techniques yields a subset of m-eigenvectors that effectively describe all variance in that data space. Bach member of a library of known components is examined based by representing each library spectrum as a vector in the m-dimensional space. Target factor testing techniques yield an angle between this vector and the data space. Those library members that have the smallest angles are considered to be potential mixture members and are ranked accordingly. Every combination of the top y library members is considered as a potential solution and a multivariate least-squares solution is calculated using the mixture spectra for each of the potential solutions. A ranking algorithm is then applied and used to select the combination that is most likely the set of pure components in the mixture.

    摘要翻译: 从混合物收集的光谱数据定义了n维数据空间(n是数据点的数量),并且PCA技术的应用产生有效描述该数据空间中的所有方差的m个特征向量的子集。 通过将每个库谱表示为m维空间中的向量来检查已知组件的库的Bach成员。 目标因子测试技术在该矢量与数据空间之间产生一个角度。 具有最小角度的那些图书馆成员被认为是潜在的混合成员并被相应排名。 顶级图书馆成员的每个组合都被认为是潜在的解决方案,并且使用每个潜在解决方案的混合谱来计算多变量最小二乘解。 然后应用排序算法并用于选择混合中最可能的纯组分集合的组合。

    Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data
    7.
    发明申请
    Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data 审中-公开
    使用熔融拉曼,SWIR和LIBS传感器数据检测病原微生物

    公开(公告)号:US20110237446A1

    公开(公告)日:2011-09-29

    申请号:US13081992

    申请日:2011-04-07

    IPC分类号: C40B30/02

    摘要: A system and method to search spectral databases to identify unknown materials, specifically pathogenic microorganisms. A library is provided, having sublibraries containing reference data sets of known materials and test data sets, both generated by at least one spectroscopic data generating instrument. For each test data set, each sublibrary associated with the instrument used is searched. A set of scores for each searched sublibrary is produced, representing the likelihood of a match between the reference data set and test data set. Relative probability values are calculated for each searched sublibrary. All relative probability values are fused producing a set of final probability values, used in determining whether the unknown material is represented through a known material in the library. The known material represented in the libraries having the highest final probability value is reported, if the highest final probability value is greater than or equal to the minimum confidence value.

    摘要翻译: 检索光谱数据库以识别未知物质,特别是致病微生物的系统和方法。 提供一个库,具有包含由至少一个光谱数据生成装置生成的已知材料和测试数据集的参考数据集的子图标。 对于每个测试数据集,搜索与使用的仪器相关联的每个子库。 产生每个搜索的子图库的一组分数,表示参考数据集和测试数据集之间的匹配的可能性。 对于每个搜索的子图库计算相对概率值。 所有相对概率值被融合,产生一组最终概率值,用于确定未知材料是否通过库中的已知材料表示。 如果最大最终概率值大于或等于最小置信度值,则报告具有最高最终概率值的库中表示的已知材料。

    Method And Apparatus For Multimodal Detection
    8.
    发明申请
    Method And Apparatus For Multimodal Detection 有权
    多模态检测方法与装置

    公开(公告)号:US20080084553A1

    公开(公告)日:2008-04-10

    申请号:US11632471

    申请日:2005-07-14

    IPC分类号: G01J3/44 G01J3/00

    摘要: In one embodiment, the disclosure relates to a method for detecting and classifying an unknown substance in a sample. The method including the steps of (a) providing a spectrum for each of a predetermined number of reference substances; (b) detecting an area of interest on said unknown substance; (c) targeting said area of interest; (d) determining a spectrum from said area of interest; (e) comparing the determined spectrum with the spectrum of one of the reference substances; and (f) classifying said unknown substance based on the comparison of spectra.

    摘要翻译: 在一个实施方案中,本公开涉及用于检测和分类样品中未知物质的方法。 该方法包括以下步骤:(a)为预定数量的参考物质中的每一个提供光谱; (b)检测所述未知物质的感兴趣区域; (c)针对该地区的目标; (d)从所述感兴趣区域确定频谱; (e)将所确定的光谱与参考物质之一的光谱进行比较; 和(f)基于光谱的比较对所述未知物质进行分类。

    System and method for spectral unmixing in a fiber array spectral translator based polymorph screening system
    9.
    发明申请
    System and method for spectral unmixing in a fiber array spectral translator based polymorph screening system 有权
    基于光纤阵列光谱变换器的多态性筛选系统中光谱解混合的系统和方法

    公开(公告)号:US20070201022A1

    公开(公告)日:2007-08-30

    申请号:US11679112

    申请日:2007-02-26

    IPC分类号: G01J3/00

    摘要: The disclosure relates generally to methods and apparatus for using a fiber array spectral translator-based (“FAST”) spectroscopic system for performing spectral unmixing of a mixture containing multiple polymorphs. In an embodiment, a first spectrum of a mixture containing polymorphs of a compound is obtained using a photon detector and a fiber array spectral translator having plural fibers. A set of second spectra is provided where each spectrum of the set of second spectra may be representative of a different polymorph of the compound. The first spectrum and the set of second spectra may be compared, and based on the comparison, the presence of one or more polymorphs in the mixture may be determined.

    摘要翻译: 本公开总体上涉及使用用于执行含有多个多晶型物的混合物的光谱解混合的光纤阵列光谱转换器(“FAST”)光谱系统的方法和装置。 在一个实施方案中,使用具有多个纤维的光子检测器和光纤阵列光谱转换器获得含有化合物多晶型物的混合物的第一光谱。 提供了一组第二光谱,其中该组第二光谱的每个光谱可以代表该化合物的不同多晶型物。 可以比较第一光谱和第二光谱集,并且基于比较,可以确定混合物中一个或多个多晶型物的存在。