Abstract:
This invention relates to a novel modified RNA composition (called oxo-RNA) comprising at least an oxo-nucleotide (containing oxopurine) in its 3′-end region (e.g. 3′-tail, 3′-UTR). The oxo-nucleotide includes 8-hydroxyguanine/8-oxoguanine/7,8-dihydro-8-oxoguanine (or called oxo-G/oxo-dG) and 8-hydroxyadenine/8-oxoadenine (or called oxo-A/oxo-dA). Oxo-RNA can be a single-stranded RNA sequence or double-stranded duplex, or even an RNA-DNA hybrid duplex. Advantageously, this new oxo-RNA composition not only greatly enhance RNA/DNA stability and functionality but also can prevent TREX1-mediated degradation and the related non-specific immunity over-activation (e.g. cytokine storm). Most importantly, the constructs of oxo-RNA can be designed to mimic antisense RNA oligonucleotide (aRNA-ASO), small interfering RNA (siRNA), short hairpin RNA (shRNA), microRNA (miRNA) mimic, microRNA precursor (pre-miRNA), double-stranded RNA (dsRNA), RNA-DNA hybrid, long noncoding RNA (IncRNA), small activating RNA (saRNA), messenger RNA (mRNA), and/or self-amplifying RNA/mRNA (saRNA/samRNA), or a combination thereof.
Abstract:
This invention relates to a novel composition and method for RNA/mRNA production as well as amplification using viral RNA replicase and/or RNA-dependent RNA polymerase (RdRp) enzymes and the use of associated RNA/mRNA products thereof. The present invention can be used for manufacturing and amplifying all varieties of RNA/mRNA sequences carrying at least a replicase/RdRp-binding site in the 5′- or 3′-end, or both. The RNA/mRNA so obtained is useful for not only producing mRNA vaccines and/or RNA-based medicines but for generating the mRNA-associated proteins, peptides, and/or antibodies under an in-vitro as well as in-cell translation condition. Principally, the present invention is a novel RNA replicase/RdRp-mediated RNA/mRNA amplification method, namely Replicase Cycling Reaction (RCR). The RNA replicases involved in RCR include but not limited to viral and/or bacteriophage RNA-dependent RNA polymerases (RdRp) in either modified or non-modified mRNA and/or protein compositions, particularly coronaviral (e.g. COVID-19) and hepatitis C viral (HCV) RdRp enzymes.
Abstract:
A combined accelerating/braking apparatus of a vehicle includes a substantially hook-shaped rod which includes a first end, a first elbow, a second elbow, a third elbow, a fourth elbow, and a second end, where the fourth elbow is pivotally connected to a wall in the vehicle. A pedal is pivotally connected to the first elbow of the hook-shaped rod. A bracket which is secured to a wall of the vehicle includes a slot for detachable receiving the second elbow of the hook-shaped rod. A first torsion spring is biased between the pedal and a rod portion between the first elbow and the second elbow of the hook-shaped rod for providing a recovery tension when the pedal is pivotally depressed by a driver's foot sole with respect to the first elbow of the hook-shaped rod. A second torsion spring is biased between a wall of the vehicle and a rod portion between the third elbow and the fourth elbow of the hook-shaped rod for providing a recovery tension when the hook-shaped rod is pivotally moved with respect to the fourth elbow. The pedal is pivotally depressed by a driver's foot sole with respect to the first elbow of the hook-shaped rod for acceleration. The pedal is depressed by a driver's heel, causing the hook-shaped rod to pivotally move with respect to the fourth elbow of the hook-shaped rod for braking.
Abstract:
This invention relates to a novel composition of RNA/mRNA medicines and/or vaccines produced by using Replicase/RNA-dependent RNA polymerase (RdRP)-mediated RNA Cycling Reaction (RCR). This RCR-amplifiable RNA/mRNA composition comprises at least a replicase/RdRP-binding site (RdRP-BS) in the 5′-end or 3′-end, or both, of a desired RNA sequence of interest, to form a self-amplifying RNA/mRNA (samRNA) platform. The samRNA platform so obtained is useful for designing and developing a variety of self-amplifying RNA/mRNA (samRNA) constructs, of which the desired RNA sequences may include, but not limited to, antisense oligonucleotide RNA (aRNA; ASO), small interfering RNA (siRNA), short hairpin RNA (shRNA), microRNA (miRNA)/miRNA precursor (pre-miRNA), long non-coding RNA (lncRNA), and/or messenger RNA (mRNA), or a combination thereof. The present RdRP-BS designs in said samRNA are derived or modified from the identified RdRP-BS motifs of coronavirus (e.g. SARS-CoV-2-associated viruses) and/or hepatitis C virus (HCV) in either single-stranded or double-stranded conformation, or a combination thereof.
Abstract:
Disclosed is a rack pair for mounting speakers and system board in a monitor of a computer system being mounted behind a front frame of the monitor at two lower or upper corners thereof so that a distance left between the rack pair is substantially equal to a width of a system board disposed inside the monitor. The rack pair are characterized in that the rack each is formed at an inner side with a longitudinal groove which has a width slightly larger than a thickness of the system board to clamp the system board between the rack pair, that the rack each is provided with a connecting device extending toward a display tube in the monitor to connect a speaker cabinet member, and that a locater is provided at a lower portion of each rack for engaging with a fixing device provided behind the front frame of the monitor so that the rack pair for mounting speakers and system board can be firmly mounted in the monitor for the speakers to be mounted in the monitor together with the system board.
Abstract:
This invention generally relates to a novel composition of RNA/mRNA medicines as well as vaccines produced by using replicase- and/or RNA-dependent RNA polymerase (RdRp)-mediated RNA cycling reaction (RCR). The present invention is useful for developing a variety of self-amplifying RNA/mRNA (samRNA) medicines and vaccines containing at least a replicase/RdRp-binding site in the 5′- or 3′-end, or both, of any desired RNA molecule, including but not limited to antisense RNA (aRNA), small interferring RNA (siRNA), short hairpin RNA (shRNA), microRNA (miRNA)/miRNA precursor, long non-coding RNA (lnRNA) and mRNA. These RNA molecules can be either in single-stranded or in double-stranded, or mixed, conformation. The samRNA so obtained is useful not only for producing RNA-based vaccines and/or medicines but also for generating the mRNA-associated proteins, peptides, and/or antibodies under a proper in-vitro or in-cell translation condition. The replicase/RdRp-binding sites used in samRNA are derived or modified from coronaviral (e.g. COVID-19) and/or hepatitis C viral (HCV) RNA-dependent RNA polymerases (RdRp) in either single-stranded or double-stranded compositions.
Abstract:
This invention generally relates to a novel RNA/mRNA production and amplification method using viral RNA replicase and/or RNA-dependent RNA polymerase (RdRp) enzymes as well as the associated mRNAs thereof. The present invention can be used for manufacturing and amplifying all varieties of RNA/mRNA sequences carrying at least an RdRp-binding site in the 5′- or 3′-end, or both. The RNA/mRNA so obtained is useful for not only producing mRNA vaccines and/or RNA-based medicines but also for generating the mRNA-associated proteins, peptides, and/or antibodies under an in-vitro as well as in-cell translation condition. Principally, the present invention is a novel RNA replicase-mediated RNA/mRNA amplification method, namely Replicase Cycling Reaction (RCR). The RNA replicases involved in RCR include but not limited to viral and/or bacteriophage RNA-dependent RNA polymerases (RdRp), particularly coronaviral and hepatitis C viral (HCV) RdRp enzymes.
Abstract:
This invention generally relates to a novel RNA composition and its production method useful for generating and expanding induced pluripotent stem cells (iPS cells; iPSC) as well as adult stem cells (ASC). The RNA composition so defined can be used for producing not only non-transgenic but also tumor-free iPS cells. The defined RNA composition contans at least two types of different RNA constructs; one is “miR-302 precursor RNA (pre-miR-302)” and the other is “RNA-dependent RNA polymerase (RdRp)” mRNA. Both of pre-miR-302 and RdRp mRNA contain highly structured RNA comformations, such as hairpin and stem-loop structures. To produce highly structured RNAs, a novel PCR-IVT methodology has been developed and used with a specially designed RNA polymerase-helicase mixture activity.
Abstract:
Disclosed is a method and a system for automatically managing probe mark shifts. A determination is made from test data as to whether a die on a wafer is defective. A probe mark check on the wafer is made to determine whether a probe mark is shifted. Necessary recovery action is performed in response to the probe mark being shifted. In the probe mark check, a plurality of probe mark positions are selected from the test data. A determination is then made as to whether at least one of the plurality of probe mark positions violates an engineering rule.