摘要:
A composite wafer carrier according to an embodiment of the present invention comprises an operative portion formed of a first thermoplastic material and a support portion formed of a second different thermoplastic material. One of the operative portion and support portion is overmolded onto the other to form a gapless hermitic interface that securely bonds the portions together. The operative portion may be a transparent window, a portion of a latching mechanism or a wafer contact portion. Preferred embodiments of the invention include wafer carriers with said features, process carriers with said features and a process for manufacturing wafer carriers with said features.
摘要:
A composite wafer carrier according to an embodiment of the present invention comprises an operative portion formed of a first thermoplastic material and a support portion formed of a second different thermoplastic material. One of the operative portion and support portion is overmolded onto the other to form a gapless hermitic interface that securely bonds the portions together. The operative portion may be a transparent window, a portion of a latching mechanism or a wafer contact portion. Preferred embodiments of the invention include wafer carriers with said features, process carriers with said features and a process for manufacturing wafer carriers with said features.
摘要:
The present invention relates generally to a system and method for including a thin protective containment thermopolymer film (10), such as PEEK, in the molding process for handlers, transporters, carriers, trays and like devices utilized in the semiconductor processing industry. The thermoplastic film (10) of predetermined size and shape is selectively placed along a shaping surface (26) in a mold cavity (22) for alignment with a desired target surface of a moldable material. The film is permanently adhered to the moldable material. As a result, a compatible polymer film (10) can be selectively bonded only to those target surfaces where performance characteristics such as abrasion resistance, heat resistance, chemical resistance, outgassing containment, rigidity enhancement, hardness, creep reduction, fluid absorption containment, and the like is needed.
摘要:
Fluorinated polymers of interest have aromatic groups in their repeat units and at least about 25% of available aromatic ring positions fluorinated. The aromatic rings can be along the polymer backbone and/or along the side chains of the polymer. In particular, for polymers with the aromatic groups along the polymer backbone generally at least about 55 percent of the aromatic ring positions are fluorinated. Approaches for the fluorination of aromatic polymers can involve a polymer melt that is contacted with an appropriate fluorination reagent. In other approaches, the fluorination is performed in a polymer solution. The fluorination reactions can be performed in a batch operation or a continuous operation.
摘要:
The present invention relates generally to a system and method for including a thin protective containment polymer film (100), such as Peek in the molding process for fluid processing devices utilized in the semiconductor processing industry. The thermoplastic film of predetermined size and shape is selectively placed along a shaping surface (110) in a mold cavity (106) for alignment with a desired target surface of a molded material. The molding processes causes a surface of the film (100) to bond to a contact surface of the moldable material such that the film (100) is permanently adhered to the moldable material. As a result, a comparable polymer film can be selectively bonded only to those target surfaces where performance characteristics such as abrasion resistance, heat resistance, chemical resistance, outgassing prevention, rigidity enhancement, fluid absorption prevention, ultraviolet resistance, friction reduction and the like is needed.
摘要:
The present invention relates generally to a system and method for including a thin conductive polymer film, such carbon-filled PEEK, in the molding process for handlers, transporters, carriers, trays and like devices utilized in the semiconductor processing industry. The conductive film of predetermined size and shape is selectively placed along a shaping surface in a mold cavity for alignment with a desired target surface of a moldable material. The molding process causes a surface of the film to bond to a contact surface of the moldable material such that the film is permanently adhered to the moldable material. As a result, a compatible conductive polymer can be selectively bonded only to those target surfaces where ESD is needed.
摘要:
Improved processes for forming shaped articles comprise extruding a composite comprising a polymer and at least one additive, and shaping the composite to form an article having a desired shape. Generally, the extruding and shaping steps are performed on a single process line, which allows the shaped articles to be produced in a continuous process. Due to the continuous process design, shaped articles made by the improved process can be produced in large quantities at a low cost per article. In some embodiments, a shaping station can be employed to shape the extruded composite. The shaping station can comprise a laser machining apparatus, a hot stamping apparatus, rollers having a predetermined pattern, or combinations thereof.
摘要:
Improved compositions comprise a polymer and carbon fibers, such as nanotubes. In some embodiments, the carbon fibers, e.g., nanotubes, can be mechanically blended or incorporated into the polymer, while in some embodiments carbon nanotubes also may be covalently bonded to the polymer to form corresponding covalent materials. In particular, the polymer can be covalently bonded to the side walls of the carbon nanotubes to form a composite with particularly desirable mechanical properties. Specifically, the bonding of the polymer to the nanotube sidewall can provide desirable mechanical properties of the composite due to the orientation relative to other types of association between the nanotubes and the polymer. The processing of the nanotubes can be facilitated by the dispersion of the nanotubes in an aqueous solution comprising a hydrophylic polymer, such as ethyl vinyl acetate. A dispersion of nanotubes can be combined with a polymer in an extrusion process to blend the materials under high shear, such as in an extruder. In general, various articles can be formed that take advantage of the properties of the composite materials incorporating a polymer and carbon fibers, such as carbon nanotubes.