摘要:
A method of diagnosing vehicle NOx sensor faults that includes sensing that an exhaust gas recirculating (EGR) valve is closed and that fuel flow to a vehicle engine is above a predetermined rate using an electronic control unit (ECU) located on a vehicle; recording the output received from an NOx sensor relative to an amount of fuel consumption over a period of time using the ECU; calculating the mean of the NOx sensor output relative to fuel consumption recorded over the period of time using the ECU; performing a least-squares estimation (LSE) using the ECU for more than one calculated mean based on an expected NOx sensor output; generating a NOx sensor gain for the NOx sensor using the ECU based on the LSE; and determining whether the NOx sensor gain is above or below a predetermined threshold.
摘要:
A method and apparatus for controlling a diagnostic module for an exhaust gas sensor in a vehicle is provided. The exhaust gas sensor is located in an exhaust pathway in the vehicle. The diagnostic module may be configured to perform a signal range verification of an oxygen sensor portion of the exhaust gas sensor. A controller is operatively connected to the exhaust gas sensor and to the vehicle engine. The controller disables the diagnostic module when one or more entry conditions are satisfied. The entry conditions may include requiring the engine speed to be greater than a fuel cut-off threshold, the fuel cut-off threshold being the engine speed at which the fuel to the engine is terminated. The entry conditions may include: no fuel being delivered to the engine; and a vehicle exhaust brake mode being activated such that the exhaust pathway from the engine is obstructed.
摘要:
A vehicle includes an engine having an exhaust port, an exhaust system for conditioning an engine exhaust stream, a nitrogen oxide (NOx) sensor positioned within the exhaust stream, and a controller. The controller has an out-of-range diagnostic tool for evaluating a range performance of the sensor. The controller detects a predetermined engine-on fuel shutoff event, and then temporarily disables the diagnostic tool during the fuel shutoff event. The fuel shutoff event may be a vehicle deceleration-based event. A selective catalytic reduction (SCR) device may be positioned within the exhaust system, with at least one NOx sensor positioned at the outlet of the SCR device. An additional NOx sensor may be positioned in proximity to the exhaust port. A method for use aboard the above vehicle includes detecting the engine-on fuel shutoff event via the controller, and temporarily disabling the diagnostic tool for the duration of the detected fuel shutoff event.
摘要:
A method for determining Covariance of Indicated Mean Effective Pressure (COVIMEP) using already-available crankshaft-based measurements that correlate with COVIMEP. Correlated values of COVIMEP are stored as lookup tables in an Engine Control Module for use in continuously determining COVIMEP during engine operation. COVIMEP thus calculated may be used in known fashion as a real time control algorithm variable for such engine control parameters as fueling rate, spark angle advance, exhaust gas recirculation flow, and camshaft phaser advance angle or other engine parameters.
摘要:
A method of monitoring a sensor of an exhaust system is provided. The method includes evaluating humidity of air entering the exhaust system; and monitoring operation of a sensor in the exhaust system based on the humidity.
摘要:
A vehicle includes an engine, an exhaust system, an SCR device, upstream and downstream NOx sensors, and a controller. The controller is in electrical communication with the NOx sensors, and is configured for detecting a stuck-in-range fault condition of the downstream NOx sensor during a low exhaust flow condition. The controller detects the condition, receives the upstream and downstream NOx levels from the respective upstream and downstream NOx sensors, and compares these levels to a zero or near-zero threshold when the low exhaust flow condition is active. The controller is also configured for executing a first control action when the upstream NOx level is below the threshold and the downstream NOx level exceeds the threshold, and executing a second control action when neither of the levels exceeds the threshold. A method is also disclosed for diagnosing the stuck-in-range condition.
摘要:
A vehicle includes an engine having an exhaust port, an exhaust system for conditioning an engine exhaust stream, a nitrogen oxide (NOx) sensor positioned within the exhaust stream, and a controller. The controller has an out-of-range diagnostic tool for evaluating a range performance of the sensor. The controller detects a predetermined engine-on fuel shutoff event, and then temporarily disables the diagnostic tool during the fuel shutoff event. The fuel shutoff event may be a vehicle deceleration-based event. A selective catalytic reduction (SCR) device may be positioned within the exhaust system, with at least one NOx sensor positioned at the outlet of the SCR device. An additional NOx sensor may be positioned in proximity to the exhaust port. A method for use aboard the above vehicle includes detecting the engine-on fuel shutoff event via the controller, and temporarily disabling the diagnostic tool for the duration of the detected fuel shutoff event.
摘要:
A method of monitoring a sensor of an exhaust system is provided. The method includes evaluating humidity of air entering the exhaust system; and monitoring operation of a sensor in the exhaust system based on the humidity.
摘要:
A vehicle includes an engine, an exhaust system, an SCR device, upstream and downstream NOx sensors, and a controller. The controller is in electrical communication with the NOx sensors, and is configured for detecting a stuck-in-range fault condition of the downstream NOx sensor during a low exhaust flow condition. The controller detects the condition, receives the upstream and downstream NOx levels from the respective upstream and downstream NOx sensors, and compares these levels to a zero or near-zero threshold when the low exhaust flow condition is active. The controller is also configured for executing a first control action when the upstream NOx level is below the threshold and the downstream NOx level exceeds the threshold, and executing a second control action when neither of the levels exceeds the threshold. A method is also disclosed for diagnosing the stuck-in-range condition.