摘要:
A temperature setting method of the present invention includes the steps of: measuring states of an etching pattern within the substrate for a substrate for which a series of photolithography processing including thermal processing and an etching treatment thereafter have been finished; calculating temperature correction values for regions of a thermal processing plate from measurement result of the states of the etching pattern within the substrate using a function between correction amounts for the states of the etching pattern and the temperature correction values for the thermal processing plate; and setting the temperature for each of the regions of the thermal processing plate by each of the calculated temperature correction values.
摘要:
In the present invention, the line widths within a substrate of an etching pattern are measured for a substrate for which photolithography processing and an etching treatment thereafter have been finished. The line width measurement results are converted into the line widths of a resist pattern using relational expressions which have been obtained in advance. From the converted line widths of the resist pattern, coefficients of a polynomial function indicating variations within the substrate are calculated. Next, a function between line width correction amounts for the resist pattern and temperature correction values is used to calculate temperature correction values for the regions of the thermal plate to bring the coefficients of the polynomial function close to zero. Based on each of the calculated temperature correction values, the temperature for each of the regions is set.
摘要:
A processing temperature of thermal processing is corrected based on measurement of a first dimension of a resist pattern on a substrate from a previously obtained relation between a dimension of a resist pattern and a temperature of thermal processing, a second dimension of the resist pattern after thermal processing is performed at the corrected processing temperature is measured, a distribution within the substrate of the second dimension is classified into a linear component expressed by an approximated curved surface and a nonlinear component, a processing condition of exposure processing is corrected based on the linear component from a previously obtained relation between a dimension of a resist pattern and a processing condition of exposure processing, and thermal processing at the processing temperature corrected in a temperature correcting step and exposure processing under the processing condition corrected in an exposure condition correcting step are performed to form a predetermined pattern.
摘要:
A thermal plate of a heating unit is divided into a plurality of thermal plate regions, and a temperature can be set for each of the thermal plate regions. A temperature correction value for adjusting a temperature within the thermal plate can be set for each of the thermal plate regions of the thermal plate. The line widths within the substrate which has been subjected to a photolithography process are measured, and an in-plane tendency of the measured line widths is decomposed into a plurality of in-plane tendency components using a Zernike polynomial. From the calculated plurality of in-plane tendency components, in-plane tendency components improvable by changing the temperature correction values are extracted and added together to calculate an improvable in-plane tendency of the measured line widths within the substrate. The change of setting of the temperature correction value for each of the thermal plate regions of the thermal plate is performed only when the magnitude of the improvable in-plane tendency exceeds a threshold value set in advance.
摘要:
In the present invention, data on a substrate image picked up by an image pickup unit is outputted to a difference calculation unit where a difference image from a normal substrate is calculated. A synthesis calculation unit calculates a synthesized image by rotating the difference image 360 degrees by every predetermined angle about the center of the substrate and synthesizing the images. A Zernike calculation unit digitizes the synthesized image by a Zernike polynomial and outputs a concentric circle component to a determination unit where the component is compared with a previously set threshold value, so that the presence or absence of a defect on the substrate is determined. The present invention can facilitate the determination of the presence or absence of a macro defect on the substrate and reduce the time required for the determination.
摘要:
In the present invention, temperature drop amounts of heating plate regions when the substrate is mounted on a heating plate are detected to detect a warped state of the substrate. From the temperature drop amounts of the heating plate regions, correction values for set temperatures of the heating plate regions are calculated. The calculation of the correction values for the set temperatures of the heating plate regions is performed by estimating steady temperatures within the substrate to be heat-processed on the heating plate from the temperature drop amounts of the heating plate regions using a correlation obtained in advance. From the estimated steady temperatures within the substrate and the temperature drop amounts of the heating regions, the correction values for the set temperatures of the heating plate regions are calculated. Based on the correction values for the set temperatures, the set temperatures of the heating plate regions are changed.
摘要:
In the present invention, temperature drop amounts of heating plate regions when the substrate is mounted on a heating plate are detected to detect a warped state of the substrate. From the temperature drop amounts of the heating plate regions, correction values for set temperatures of the heating plate regions are calculated. The calculation of the correction values for the set temperatures of the heating plate regions is performed by estimating steady temperatures within the substrate to be heat-processed on the heating plate from the temperature drop amounts of the heating plate regions using a correlation obtained in advance. From the estimated steady temperatures within the substrate and the temperature drop amounts of the heating regions, the correction values for the set temperatures of the heating plate regions are calculated. Based on the correction values for the set temperatures, the set temperatures of the heating plate regions are changed.
摘要:
In the present invention, for measurement of line widths, for example, at 36 locations within a substrate processed in a coating and developing treatment system, the 36 measurement points are divided and, for example, six substrates are used to measure the line widths at all of measurement points. In this event, the line widths at six measurement points are measured in each of the substrate, which exist in substrate regions different for each substrate. Then, the measurement results of the line widths at the measurement points of the substrates are combined, so that the line widths at 36 measurement points are finally detected. According to the present invention, the measurements of product substrates can be performed without decreasing the throughput of processing of the product substrates.
摘要:
In the present invention, a thermal plate of a heating unit is divided into a plurality of thermal plate regions, and a temperature can be set for each of the thermal plate regions. A temperature correction value for adjusting a temperature within the thermal plate can be set for each of the thermal plate regions of the thermal plate. The line widths within the substrate which has been subjected to a photolithography process are measured, and, from an in-plane tendency of the measured line widths, an in-plane tendency improvable by temperature correction and an unimprovable in-plane tendency are calculated using a Zernike polynomial. An average remaining tendency of the improvable in-plane tendency after improvement obtained in advance is added to the unimprovable in-plane tendency to estimate an in-plane tendency of the line widths within the substrate after change of temperature setting.
摘要:
In the present invention, substrates in a plurality of lots are successively processed in a coating and developing treatment system, and line width measurement is performed for some of substrates of the substrate which have been through processing in each lot. The line width measurement of two successive lots is performed such that the last line width measurement in the previous lot of the two successive lots has been completed at the time of completion of processing of a substrate which is first subjected to the line width measurement in the subsequent lot. According to the present invention, the measurement of product substrates can be performed without decreasing the throughput of the product substrates.