Abstract:
There is provided a multi-mode power amplifier operable in a low power mode having a preset power range and in a high power mode having a power range higher than the power range of the low power mode. The multi-mode power amplifier includes: a high power amplifying unit including at least one cascode amplifier to amplify an input signal to a high power level having a preset power range; a low power amplifying unit sharing a common source node of the at least one cascode amplifier to amplify the input signal to a low power level having a power range lower than the high power level; and a coupling unit coupling a transfer path of a signal output from the high power amplifying unit and a transfer path of a signal output from the low power amplifying unit to each other.
Abstract:
There is provided a power amplifier capable of supplying variable bias to an amplifier circuit by accurately transferring the envelope components of an input signal during the supply of active bias power to the amplifier circuit. The power amplifier includes: an envelope detector detecting an envelope of an input signal; a bias power generator including at least one P-type MOSFET and one N-type MOSFET connected to each other in an inverter manner between a driving power terminal supplying driving power having a preset voltage level and a reference bias power terminal supplying preset reference bias power to generate bias power varied according to detection results from the envelope detector; and an amplifier amplifying the input signal according to the bias power level from the bias power generator.
Abstract:
Disclosed herein is a digital attenuator, which can improve the variation in the pass phase of the digital attenuator because the difference between parasitic components caused by the turn-on and turn-off operations of the switching transistors of the digital attenuator causes the difference between the pass phases. The digital attenuator of the present invention includes an attenuation circuit unit configured to cause a variation in a pass phase due to a difference between parasitic components caused by turn-on and turn-off operations of switching transistors, and a phase correction unit connected in parallel with the attenuation circuit unit and provided with a series resistor and a low pass filter. Accordingly, variations in pass phase can be eliminated by connecting a low pass filter, connected to series resistors, in parallel with the series switch of an attenuation circuit unit, thus eliminating the influence of the parasitic components.
Abstract:
A radar system includes a transmitter stage for generating a certain transmission signal; a circularly polarized antenna for emitting the transmission signal in a form of a circularly polarized signal, and receiving a reflection signal; a polarizer for isolating the reflection signal received from the circularly polarized antenna from the transmission signal, and outputting the reflection signal to a next stage; and a receiver stage for receiving the reflection signal output from the polarizer, converting the reflection signal into a signal of a certain frequency by using as a certain mixer switching signal the leakage signal leaking from the transmitter stage, and outputting the converted reflection signal. Therefore, the high-sensitivity radar system can be built in a compact size.
Abstract:
The present invention relates to an optical coupler 2.times.2 optical switch which can efficiently shorten the length of device by employing a cantilever and a movable optical waveguide and a method for optical switching with the optical coupler 2.times.2 optical switch. An optical coupler 2.times.2 optical switch of the present invention comprises: an optical coupler in which two fixed optical waveguides are provided on a substrate; an optical waveguide positioned between the fixed optical waveguides, which is moved up and down; and, a cantilever which is linked to the optical waveguide to move the optical waveguide up and down by the voltage applied to electrodes. Since the coupling length of the optical coupler(22) is changed depending on the distance between the fixed optical waveguides(21, 21') and the optical waveguide(23), length(D) of the optical, coupler(22) can be shortened to a great extent compared to the prior art optical coupler 2.times.2 optical switch, and the insertion loss of the device in the construction of optical communication system can be lowered significantly and optical switching can be carried out with a good performance.
Abstract:
An area-variable varactor diode is disclosed, in which the capacitance can be arbitrarily varied under an applied bias voltage. The area-variable varactor diode is characterized in that, in order to ensure freedom to designing the epi-layer, to obtain the desired capacitance characteristics, and to facilitate the integration with other elements, a steeply varied depletion layer area is provided through a variation of the surface layout area, and thus, varied capacitance characteristics are obtained. In steeply varying the area of the depletion layer, an etching of the active layer, a selective epi-layer growth, and an ion implantation are carried out or a combination of them is carried out. The capacitance characteristics are varied in accordance with the pattern of the mask, and therefore, a restriction is not imposed on the epi-layer, with the result that an integration with other elements becomes easy. Further, because the mask pattern is resorted to, it becomes possible to manufacture a varactor diode which shows a capacitance variation of a strong non-linearity and a large capacitance variation rate.
Abstract:
Disclosed herein is an asymmetric power divider. The asymmetric power divider includes a power dividing unit, a first matching network, and a second matching network. The power dividing unit supplies different amounts of power to a carrier amplifier and a peaking amplifier, which are connected in parallel. The first matching network is connected between the power dividing unit and the carrier amplifier so as to perform impedance matching between the power dividing unit and the carrier amplifier. The second matching network is connected between the power dividing unit and the peaking amplifier so as to perform impedance matching between the power dividing unit and the peaking amplifier.
Abstract:
There is provided a multi-mode power amplifier operable in a low power mode having a preset power range and in a high power mode having a power range higher than the power range of the low power mode. The multi-mode power amplifier includes: a high power amplifying unit including at least one cascode amplifier to amplify an input signal to a high power level having a preset power range; a low power amplifying unit sharing a common source node of the at least one cascode amplifier to amplify the input signal to a low power level having a power range lower than the high power level; and a coupling unit coupling a transfer path of a signal output from the high power amplifying unit and a transfer path of a signal output from the low power amplifying unit to each other.
Abstract:
Disclosed is a power amplifier. A power amplifier according to an aspect of the invention may include: a first amplification section having a first N metal oxide semiconductor (MOS) amplifier and a second N MOS amplifier connected in a cascode configuration and amplifying an input signal; a second amplification section having a first P MOS amplifier and a second P MOS amplifier connected in a cascode configuration and amplifying the input signal; and a power combining section combining respective output signals of the first amplification section and the second amplification section.
Abstract:
A compact directional coupler and a mobile Radio-Frequency Identification (RFID) reader transceiver system using the same. The compact directional coupler can include a primary transmission line, a secondary transmission line, and a second capacitor connected in parallel to the secondary transmission line. The coupler can further include a first capacitor connected in parallel to the primary transmission line and capacitors connected between both end of the first capacitors and the ground respectively. A mobile RFID reader transceiver system can include a transmission terminal circuit, a power amplifier, the compact directional coupler, an antenna, a low noise amplifier, and the reception terminal circuit. The system further can include a band-pass filer, and/or a power combiner to match an output terminal of the power amplifier.