摘要:
Systems, devices, and methods to mitigate the pressure disturbance associated with the injection of low-pressure analyte samples into a high-pressure HPLC fluid stream, to enhance chromatographic performance related to retention time and reproducibility. The preferred embodiment coordinates the injection run with active pressure control of a binary solvent delivery system to virtually eliminate the customary pressure drop when the low-pressure loop is brought on line. An additional benefit that enhances reproducibility is accomplished by forcing a consistent timing relationship between the injection run, the mechanical position of the delivery pump pistons, and the start and subsequent gradient delivery.
摘要:
A feedback control loop for a high pressure pump modifies the accumulator velocity and pressure during solvent transfer. The accumulator velocity is adjusted to maintain the system pressure equal to the expected pressure to thereby eliminate the effect of the flow deficit created by a thermal effect.
摘要:
A feedback control loop for a high pressure pump modifies the accumulator velocity and pressure during solvent transfer. The accumulator velocity is adjusted to maintain the system pressure equal to the expected pressure to thereby eliminate the effect of the flow deficit created by a thermal effect.
摘要:
Embodiments of the present invention are directed to method and devices for measuring the pressure of a pump chamber in which no internal opening or connections are needed. One embodiment of the present invention is directed to an apparatus for pumping fluid. The apparatus comprises at least one housing having a transducer surface. The transducer surface has a thickness exhibiting measurable deformation upon the chamber holding a fluid under pressure such that the transducer surface has a first position at which the chamber is at one pressure and a second position at which the chamber is at a second pressure. A strain sensor is affixed to the transducer surface producing; at least one signal upon the transducer surface assuming the first position and at least one signal upon the transducer surface assuming the second position to function as an integrated pressure transducer.
摘要:
A feedback control loop for a high pressure pump modifies the accumulator velocity and pressure during solvent transfer. The accumulator velocity is adjusted to maintain the system pressure equal to the expected pressure to thereby eliminate the effect of the flow deficit created by a thermal effect.
摘要:
Systems, devices, and methods to mitigate the pressure disturbance associated with the injection of low-pressure analyte samples into a high-pressure HPLC fluid stream, to enhance chromatographic performance related to retention time and reproducibility. The preferred embodiment coordinates the injection run with active pressure control of a binary solvent delivery system to virtually eliminate the customary pressure drop when the low-pressure loop is brought on line. An additional benefit that enhances reproducibility is accomplished by forcing a consistent timing relationship between the injection run, the mechanical position of the delivery pump pistons, and the start and subsequent gradient delivery.
摘要:
A solvent delivery subsystem for a chromatography device performs relatively low pressure, high flow mixing of solvents to form a gradient and subsequent high pressure, low flow delivery of the gradient to the separation column. The mixing of the gradient is independent and does not interfere with the gradient delivery. To form the gradient, the outputs of an aqueous pump and an organic pump are mixed to fill a storage capillary while a downstream point from the storage capillary is vented to atmosphere. After gradient formation, the vent to atmosphere is closed, the solvent delivery system rises to high pressure, and only the aqueous pump runs for gradient delivery. To maintain integrity of the fluid stream, the solvent delivery system uses feed forward compensation and controls at least one parameter selected from the group consisting of pressure and flow in the conduit means to follow a gradual ramp.
摘要:
Systems, devices, and methods to mitigate the pressure disturbance associated with the injection of low-pressure analyte samples into a high-pressure HPLC fluid stream (52), to enhance chromatographic performance related to retention time and reproducibility. The preferred embodiment coordinates the injection run with active pressure control of a binary solvent delivery system (30) to virtually eliminate the customary pressure drop when the low-pressure loop is brought on line. An additional benefit that enhances reproducibility is accomplished by forcing a consistent timing relationship between the injection run, the mechanical position of the delivery pump pistons, and the start and subsequent gradient delivery.
摘要:
A solvent delivery subsystem for a chromatography device performs relatively low pressure, high flow mixing of solvents to form a gradient and subsequent high pressure, low flow delivery of the gradient to the separation column. The mixing of the gradient is independent and does not interfere with the gradient delivery. To form the gradient, the outputs of an aqueous pump and an organic pump are mixed to fill a storage capillary while a downstream point from the storage capillary is vented to atmosphere. After gradient formation, the vent to atmosphere is closed, the solvent delivery system rises to high pressure, and only the aqueous pump runs for gradient delivery. To maintain integrity of the fluid stream, the solvent delivery system uses feed forward compensation and controls at least one parameter selected from the group consisting of pressure and flow in the conduit means to follow a gradual ramp.
摘要:
Systems, devices, and methods to mitigate the pressure disturbance associated with the injection of low-pressure analyte samples into a high-pressure HPLC fluid stream to enhance chromatographic performance related to retention time and reproducibility. The injection event is coordinated with active pressure control of a binary solvent delivery system to virtually eliminate the customary pressure drop when the low-pressure loop is brought on line. Consistent timing with the injection event of the mechanical position of the delivery pump pistons, and the start and subsequent gradient delivery generates reproducible results.