Abstract:
An airless vehicle tire, in particular for road vehicles, has a tread, which rolls on a road surface, and a reinforcing strip made of elastomeric material and for reinforcing the tread; the reinforcing strip being located inwards of the tread, being connected integrally to the tread, and having a number of adjacent blocks movable with respect to one another, and a circumferential forcing device for exerting force and a circumferential preload on the blocks.
Abstract:
The device is adapted to control the movement of a valve (1) of an internal combustion engine comprising a stem (1a) which may move in translation through an opening (2a) of a hollow guide body (2) and which ends in a mushroom head (1b) cooperating in operation with a valve seat (12) provided in a wall (13) of the engine head. The valve (1) may move in translation with respect to the hollow guide body (2) between a retracted position and a forward position in which the mushroom head (1b) respectively closes and opens the associated valve seat (12).The control device comprises an electromagnet (3) adapted, when energised, to retain the valve (1) in the retracted closed position, a first spring (7) associated with the valve (1) and tending to urge it towards the open position, and a second spring (8) also associated with the valve (1) and tending to oppose its transition into the open position. The arrangement is such that when the electromagnet (3) is de-energised, the valve (1) moves in acceleration towards the open position under the action of the first spring (7) until the action of the latter stops, and then the valve (1) moves in deceleration into the open position under the action of the second spring (8).
Abstract:
A tire for vehicles which does not require pressurization by means of a pressurized fluid has a tread, two sidewalls, and two beads which are attached to a wheel rim made of elastomer material, and is provided with at least one tubular reinforcement body which is associated with the tread; each of the sidewalls having a respective homogeneous resilient annular membrane, a straight generatrix of which forms an angle (A) other than 90° with the axis of the tire; the membranes being stretched radially between the tread and the beads such as to be pre-tensioned in the absence of external loads acting on the tire.
Abstract:
A feeler device for measuring the degree of roughness of an uneven surface being examined, the device comprising a transmitting transducer arranged to convert an electrical signal of a predetermined frequency into an ultrasonic wave propagated through a liquid coupling medium and having a wave length of the same order of magnitude as the uneven surface being examined, a generator being provided to generate and feed the electric signal to the transmitting transducer. A receiving transducer is arranged to receive the ultrasonic wave which is reflected by the surface being examined, the device including a support head for the transmitting transducer and the receiving transducer, the head including a base surface adapted to be rested on the surface being examined, and device also including a processor connected to the transmitting transducer and to the receiving transducer, the processor providing an indication of the phase difference between the ultrasonic signals respectively transmitted and received by the transducers when the base surface of the head rests on the surface being examined.
Abstract:
A tyre (3) for vehicles, which does not require pressurisation by means of a pressurised fluid, has a tread (16), two sidewalls (15), and two beads (8) attached to a wheel rim (2) and made of elastomer material; the tyre is provided with at least one tubular reinforcement body (18) which is associated with the tread; each of the sidewalls have a respective homogeneous resilient annular membrane (24).
Abstract:
A ground power supply line for electric traction vehicles is provided with two conductors carried by a series of tiles aligned to one another; each tile has a conductive plate and a lower supporting structure, which is made of insulating material and accommodates electric connectors, normally open switches, and a control and command unit, which switches the switches for selectively electrically connecting the conductive plate to the conductors in response to a signal deriving from an electric traction vehicle passing over said external conductive plate; the upper surface of the conductive plates is flushed with the remaining part of a road surface.
Abstract:
The system controls the propulsion of a motor vehicle with a propulsion system (1) which includes an internal combustion engine (E) with a shaft (S) for coupling to a transmission (2). The system includes an accelerator (A) with an associated sensor devices (S1) for supplying electrical signals indicating the force (FP) applied on the accelerator (A) by the driver, and an actuator device (6) operable to alter the position of the accelerator (A).; sensor devices (S2) supplying electrical signals indicating the speed of rotation (n) of the shaft (S) and/or the vehicle speed (V); and an electronic control unit (SCU) operable to control thepropulsion system (1) in dependence on the signals supplied by the sensor devices (S1) and (S2). The control unit (SCU) acquires the signals generated by the sensor (S1) and establish an instantaneous value for the traction force (FX) to be developed on the ground by the drive wheels (W) corresponding to the instantaneous value of the force (FP) applied to the accelerator (A); and control the actuator device (6) in such a way that this latter tends to place the accelerator (A) in a position which corresponds to the instantaneous value of the vehicle speed (V).
Abstract:
The system controls the propulsion of a motor vehicle with a propulsion system (1) which includes an internal combustion engine (E) with a shaft (S) for coupling to a transmission (2). The system includes an accelerator (A) with an associated sensor devices (S1) for supplying electrical signals indicating the force (FP) applied on the accelerator (A) by the driver, and an actuator device (6) operable to alter the position of the accelerator (A).; sensor devices (S2) supplying electrical signals indicating the speed of rotation (n) of the shaft (S) and/or the vehicle speed (V); and an electronic control unit (SCU) operable to control the propulsion system (1) in dependence on the signals supplied by the sensor devices (S1) and (S2). The control unit (SCU) acquires the signals generated by the sensor (S1) and establish an instantaneous value for the traction force (FX) to be developed on the ground by the drive wheels (W) corresponding to the instantaneous value of the force (FP) applied to the accelerator (A); and control the actuator device (6) in such a way that this latter tends to place the accelerator (A) in a position which corresponds to the instantaneous value of the vehicle speed (V).
Abstract:
A safety barrier for road use comprises a barrier element (5) which can be displaced between an operative position, above the road surface, and an inoperative position, in which it does not substantially project above the road surface. Preferably provided is a number of sets of aligned barrier elements, rigidly connected to one another, the adjacent sets being connected together by articulated connecting structures (18) which enable one set of barrier elements (5) to be displaced between its inoperative position and its operative position without modifying the positions of the adjacent sets. In this way, one or more stretches of the barrier can be brought into the inoperative condition, leaving the adjacent stretches of barrier in the normal operative condition. The invention is particularly, although not exclusively, suited for the construction of traffic-divider barriers in road tunnels where it is necessary to eliminate the barrier rapidly in the event of an accident occurring.
Abstract:
An internal combustion engine (E) has associated control devices (ECU, GSCU, SCU) for controlling the engine in a manner such that the engine delivers a driving torque (CM) which is variable in dependence on predetermined measured parameters, in particular on the position (&agr;) of the accelerator pedal (AP), and sensors (S1, S2) for detecting the position (&agr;) of the accelerator pedal (AP), and the rate of rotation (&ohgr;M) of the shaft (M) of the engine (E) or the forward speed (v) of the motor vehicle, respectively. The control system (ECU, GSCU, SCU) associated with the engine (E) is arranged:—to acquire from the sensors (S1, S2) the position (&agr;) of the accelerator pedal (AP) and the rate of rotation (&ohgr;M) of the engine (E), or the forward speed (v) of the motor vehicle;—to determine, in accordance with predetermined methods, the power (PT) to be applied to the driving wheels in dependence on the measured position (&agr;) of the accelerator pedal (AP) and on the calculated or acquired forward speed (v) of the vehicle, and to calculate, in dependence on the value determined for the power (PT) to be applied to the driving wheels and on the forward speed (v) of the vehicle, the driving torque (CMREF) which should correspondingly be delivered by the engine (E), and to control the engine (E) in a manner such that it delivers the driving torque (CMREF) thus calculated.